亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Human-like autonomous driving controllers have the potential to enhance passenger perception of autonomous vehicles. This paper proposes DriViDOC: a model for Driving from Vision through Differentiable Optimal Control, and its application to learn personalized autonomous driving controllers from human demonstrations. DriViDOC combines the automatic inference of relevant features from camera frames with the properties of nonlinear model predictive control (NMPC), such as constraint satisfaction. Our approach leverages the differentiability of parametric NMPC, allowing for end-to-end learning of the driving model from images to control. The model is trained on an offline dataset comprising various driving styles collected on a motion-base driving simulator. During online testing, the model demonstrates successful imitation of different driving styles, and the interpreted NMPC parameters provide insights into the achievement of specific driving behaviors. Our experimental results show that DriViDOC outperforms other methods involving NMPC and neural networks, exhibiting an average improvement of 20% in imitation scores.

相關內容

Recent years have seen a growing research interest in applications of Deep Neural Networks (DNN) on autonomous vehicle technology. The trend started with perception and prediction a few years ago and it is gradually being applied to motion planning tasks. Despite the performance of networks improve over time, DNN planners inherit the natural drawbacks of Deep Learning. Learning-based planners have limitations in achieving perfect accuracy on the training dataset and network performance can be affected by out-of-distribution problem. In this paper, we propose FusionAssurance, a novel trajectory-based end-to-end driving fusion framework which combines physics-informed control for safety assurance. By incorporating Potential Field into Model Predictive Control, FusionAssurance is capable of navigating through scenarios that are not included in the training dataset and scenarios where neural network fail to generalize. The effectiveness of the approach is demonstrated by extensive experiments under various scenarios on the CARLA benchmark.

Trajectory prediction is a cornerstone in autonomous driving (AD), playing a critical role in enabling vehicles to navigate safely and efficiently in dynamic environments. To address this task, this paper presents a novel trajectory prediction model tailored for accuracy in the face of heterogeneous and uncertain traffic scenarios. At the heart of this model lies the Characterized Diffusion Module, an innovative module designed to simulate traffic scenarios with inherent uncertainty. This module enriches the predictive process by infusing it with detailed semantic information, thereby enhancing trajectory prediction accuracy. Complementing this, our Spatio-Temporal (ST) Interaction Module captures the nuanced effects of traffic scenarios on vehicle dynamics across both spatial and temporal dimensions with remarkable effectiveness. Demonstrated through exhaustive evaluations, our model sets a new standard in trajectory prediction, achieving state-of-the-art (SOTA) results on the Next Generation Simulation (NGSIM), Highway Drone (HighD), and Macao Connected Autonomous Driving (MoCAD) datasets across both short and extended temporal spans. This performance underscores the model's unparalleled adaptability and efficacy in navigating complex traffic scenarios, including highways, urban streets, and intersections.

Platooning of connected and autonomous vehicles (CAVs) plays a vital role in modernizing highways, ushering in enhanced efficiency and safety. This paper explores the significance of platooning in smart highways, employing a coupled partial differential equation (PDE) and ordinary differential equation (ODE) model to elucidate the complex interaction between bulk traffic flow and CAV platoons. Our study focuses on developing a Dyna-style planning and learning framework tailored for platoon control, with a specific goal of reducing fuel consumption. By harnessing the coupled PDE-ODE model, we improve data efficiency in Dyna-style learning through virtual experiences. Simulation results validate the effectiveness of our macroscopic model in modeling platoons within mixed-autonomy settings, demonstrating a notable $10.11\%$ reduction in vehicular fuel consumption compared to conventional approaches.

The design of dialogue flows is a critical but time-consuming task when developing task-oriented dialogue (TOD) systems. We propose an approach for the unsupervised discovery of flows from dialogue history, thus making the process applicable to any domain for which such an history is available. Briefly, utterances are represented in a vector space and clustered according to their semantic similarity. Clusters, which can be seen as dialogue states, are then used as the vertices of a transition graph for representing the flows visually. We present concrete examples of flows, discovered from MultiWOZ, a public TOD dataset. We further elaborate on their significance and relevance for the underlying conversations and introduce an automatic validation metric for their assessment. Experimental results demonstrate the potential of the proposed approach for extracting meaningful flows from task-oriented conversations.

The existing Motion Imitation models typically require expert data obtained through MoCap devices, but the vast amount of training data needed is difficult to acquire, necessitating substantial investments of financial resources, manpower, and time. This project combines 3D human pose estimation with reinforcement learning, proposing a novel model that simplifies Motion Imitation into a prediction problem of joint angle values in reinforcement learning. This significantly reduces the reliance on vast amounts of training data, enabling the agent to learn an imitation policy from just a few seconds of video and exhibit strong generalization capabilities. It can quickly apply the learned policy to imitate human arm motions in unfamiliar videos. The model first extracts skeletal motions of human arms from a given video using 3D human pose estimation. These extracted arm motions are then morphologically retargeted onto a robotic manipulator. Subsequently, the retargeted motions are used to generate reference motions. Finally, these reference motions are used to formulate a reinforcement learning problem, enabling the agent to learn a policy for imitating human arm motions. This project excels at imitation tasks and demonstrates robust transferability, accurately imitating human arm motions from other unfamiliar videos. This project provides a lightweight, convenient, efficient, and accurate Motion Imitation model. While simplifying the complex process of Motion Imitation, it achieves notably outstanding performance.

As the era of autonomous cyber-physical systems (ACPSs), such as unmanned aerial vehicles and self-driving cars, unfolds, the demand for robust testing methodologies is key to realizing the adoption of such systems in real-world scenarios. However, traditional software testing paradigms face unprecedented challenges in ensuring the safety and reliability of these systems. In response, this paper pioneers a strategic roadmap for simulation-based testing of ACPSs, specifically focusing on autonomous systems. Our paper discusses the relevant challenges and obstacles of ACPSs, focusing on test automation and quality assurance, hence advocating for tailored solutions to address the unique demands of autonomous systems. While providing concrete definitions of test cases within simulation environments, we also accentuate the need to create new benchmark assets and the development of automated tools tailored explicitly for autonomous systems in the software engineering community. This paper not only highlights the relevant, pressing issues the software engineering community should focus on (in terms of practices, expected automation, and paradigms), but it also outlines ways to tackle them. By outlining the various domains and challenges of simulation-based testing/development for ACPSs, we provide directions for future research efforts.

This study focuses on MEC-enhanced, vehicle-based crowdsensing systems that rely on devices installed on automobiles. We investigate an opportunistic communication paradigm in which devices can transmit measured data directly to a crowdsensing server over a 4G communication channel or to nearby devices or so-called Road Side Units positioned along the road via Wi-Fi. We tackle a new problem that is how to reduce the cost of 4G while preserving the latency. We propose an offloading strategy that combines a reinforcement learning technique known as Q-learning with Fuzzy logic to accomplish the purpose. Q-learning assists devices in learning to decide the communication channel. Meanwhile, Fuzzy logic is used to optimize the reward function in Q-learning. The experiment results show that our offloading method significantly cuts down around 30-40% of the 4G communication cost while keeping the latency of 99% packets below the required threshold.

Traditional trajectory planning methods for autonomous vehicles have several limitations. For example, heuristic and explicit simple rules limit generalizability and hinder complex motions. These limitations can be addressed using reinforcement learning-based trajectory planning. However, reinforcement learning suffers from unstable learning and existing reinforcement learning-based trajectory planning methods do not consider the uncertainties. Thus, this paper, proposes a reinforcement learning-based trajectory planning method for autonomous vehicles. The proposed method involves an iterative reward prediction approach that iteratively predicts expectations of future states. These predicted states are then used to forecast rewards and integrated into the learning process to enhance stability. Additionally, a method is proposed that utilizes uncertainty propagation to make the reinforcement learning agent aware of uncertainties.The proposed method was evaluated using the CARLA simulator. Compared to the baseline methods, the proposed method reduced the collision rate by 60.17%, and increased the average reward by 30.82 times. A video of the proposed method is available at //www.youtube.com/watch?v=PfDbaeLfcN4.

Recent years have seen a growing research interest in applications of Deep Neural Networks (DNN) on autonomous vehicle technology. The trend started with perception and prediction a few years ago and it is gradually being applied to motion planning tasks. Despite the performance of networks improve over time, DNN planners inherit the natural drawbacks of Deep Learning. Learning-based planners have limitations in achieving perfect accuracy on the training dataset and network performance can be affected by out-of-distribution problem. In this paper, we propose FusionAssurance, a novel trajectory-based end-to-end driving fusion framework which combines physics-informed control for safety assurance. By incorporating Potential Field into Model Predictive Control, FusionAssurance is capable of navigating through scenarios that are not included in the training dataset and scenarios where neural network fail to generalize. The effectiveness of the approach is demonstrated by extensive experiments under various scenarios on the CARLA benchmark.

We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.

北京阿比特科技有限公司