亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Random Batch Methods (RBM) for mean-field interacting particle systems enable the reduction of the quadratic computational cost associated with particle interactions to a near-linear cost. The essence of these algorithms lies in the random partitioning of the particle ensemble into smaller batches at each time step. The interaction of each particle within these batches is then evolved until the subsequent time step. This approach effectively decreases the computational cost by an order of magnitude while increasing the amount of fluctuations due to the random partitioning. In this work, we propose a variance reduction technique for RBM applied to nonlocal PDEs of Fokker-Planck type based on a control variate strategy. The core idea is to construct a surrogate model that can be computed on the full set of particles at a linear cost while maintaining enough correlations with the original particle dynamics. Examples from models of collective behavior in opinion spreading and swarming dynamics demonstrate the great potential of the present approach.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 有限差分 · INTERACT · Extensibility · 講稿 ·
2024 年 2 月 16 日

The current study investigates the asymptotic spectral properties of a finite difference approximation of nonlocal Helmholtz equations with a Caputo fractional Laplacian and a variable coefficient wave number $\mu$, as it occurs when considering a wave propagation in complex media, characterized by nonlocal interactions and spatially varying wave speeds. More specifically, by using tools from Toeplitz and generalized locally Toeplitz theory, the present research delves into the spectral analysis of nonpreconditioned and preconditioned matrix-sequences. We report numerical evidences supporting the theoretical findings. Finally, open problems and potential extensions in various directions are presented and briefly discussed.

Continuous level Monte Carlo is an unbiased, continuous version of the celebrated multilevel Monte Carlo method. The approximation level is assumed to be continuous resulting in a stochastic process describing the quantity of interest. Continuous level Monte Carlo methods allow naturally for samplewise adaptive mesh refinements, which are indicated by goal-oriented error estimators. The samplewise refinement levels are drawn in the estimator from an exponentially-distributed random variable. Unfortunately in practical examples this results in higher costs due to high variance in the samples. In this paper we propose a variant of continuous level Monte Carlo, where a quasi Monte Carlo sequence is utilized to "sample" the exponential random variable. We provide a complexity theorem for this novel estimator and show that this results theoretically and practically in a variance reduction of the whole estimator.

We consider the classical problems of interpolating a polynomial given a black box for evaluation, and of multiplying two polynomials, in the setting where the bit-lengths of the coefficients may vary widely, so-called unbalanced polynomials. Writing s for the total bit-length and D for the degree, our new algorithms have expected running time $\tilde{O}(s \log D)$, whereas previous methods for (resp.) dense or sparse arithmetic have at least $\tilde{O}(sD)$ or $\tilde{O}(s^2)$ bit complexity.

Sine-skewed circular distributions are identifiable and have easily-computable trigonometric moments and a simple random number generation algorithm, whereas they are known to have relatively low levels of asymmetry. This study proposes a new family of circular distributions that can be skewed more significantly than that of existing models. It is shown that a subfamily of the proposed distributions is identifiable with respect to parameters and all distributions in the subfamily have explicit trigonometric moments and a simple random number generation algorithm. The maximum likelihood estimation for model parameters is considered and its finite sample performances are investigated by numerical simulations. Some real data applications are illustrated for practical purposes.

Covariance and Hessian matrices have been analyzed separately in the literature for classification problems. However, integrating these matrices has the potential to enhance their combined power in improving classification performance. We present a novel approach that combines the eigenanalysis of a covariance matrix evaluated on a training set with a Hessian matrix evaluated on a deep learning model to achieve optimal class separability in binary classification tasks. Our approach is substantiated by formal proofs that establish its capability to maximize between-class mean distance and minimize within-class variances. By projecting data into the combined space of the most relevant eigendirections from both matrices, we achieve optimal class separability as per the linear discriminant analysis (LDA) criteria. Empirical validation across neural and health datasets consistently supports our theoretical framework and demonstrates that our method outperforms established methods. Our method stands out by addressing both LDA criteria, unlike PCA and the Hessian method, which predominantly emphasize one criterion each. This comprehensive approach captures intricate patterns and relationships, enhancing classification performance. Furthermore, through the utilization of both LDA criteria, our method outperforms LDA itself by leveraging higher-dimensional feature spaces, in accordance with Cover's theorem, which favors linear separability in higher dimensions. Our method also surpasses kernel-based methods and manifold learning techniques in performance. Additionally, our approach sheds light on complex DNN decision-making, rendering them comprehensible within a 2D space.

Mesh-based Graph Neural Networks (GNNs) have recently shown capabilities to simulate complex multiphysics problems with accelerated performance times. However, mesh-based GNNs require a large number of message-passing (MP) steps and suffer from over-smoothing for problems involving very fine mesh. In this work, we develop a multiscale mesh-based GNN framework mimicking a conventional iterative multigrid solver, coupled with adaptive mesh refinement (AMR), to mitigate challenges with conventional mesh-based GNNs. We use the framework to accelerate phase field (PF) fracture problems involving coupled partial differential equations with a near-singular operator due to near-zero modulus inside the crack. We define the initial graph representation using all mesh resolution levels. We perform a series of downsampling steps using Transformer MP GNNs to reach the coarsest graph followed by upsampling steps to reach the original graph. We use skip connectors from the generated embedding during coarsening to prevent over-smoothing. We use Transfer Learning (TL) to significantly reduce the size of training datasets needed to simulate different crack configurations and loading conditions. The trained framework showed accelerated simulation times, while maintaining high accuracy for all cases compared to physics-based PF fracture model. Finally, this work provides a new approach to accelerate a variety of mesh-based engineering multiphysics problems

We design a randomized data structure that, for a fully dynamic graph $G$ updated by edge insertions and deletions and integers $k, d$ fixed upon initialization, maintains the answer to the Split Completion problem: whether one can add $k$ edges to $G$ to obtain a split graph. The data structure can be initialized on an edgeless $n$-vertex graph in time $n \cdot (k d \cdot \log n)^{\mathcal{O}(1)}$, and the amortized time complexity of an update is $5^k \cdot (k d \cdot \log n)^{\mathcal{O}(1)}$. The answer provided by the data structure is correct with probability $1-\mathcal{O}(n^{-d})$.

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

北京阿比特科技有限公司