亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work presents a new depth- and semantics-aware conditional generative model, named TITAN-Next, for cross-domain image-to-image translation in a multi-modal setup between LiDAR and camera sensors. The proposed model leverages scene semantics as a mid-level representation and is able to translate raw LiDAR point clouds to RGB-D camera images by solely relying on semantic scene segments. We claim that this is the first framework of its kind and it has practical applications in autonomous vehicles such as providing a fail-safe mechanism and augmenting available data in the target image domain. The proposed model is evaluated on the large-scale and challenging Semantic-KITTI dataset, and experimental findings show that it considerably outperforms the original TITAN-Net and other strong baselines by 23.7$\%$ margin in terms of IoU.

相關內容

Detecting pedestrians accurately in urban scenes is significant for realistic applications like autonomous driving or video surveillance. However, confusing human-like objects often lead to wrong detections, and small scale or heavily occluded pedestrians are easily missed due to their unusual appearances. To address these challenges, only object regions are inadequate, thus how to fully utilize more explicit and semantic contexts becomes a key problem. Meanwhile, previous context-aware pedestrian detectors either only learn latent contexts with visual clues, or need laborious annotations to obtain explicit and semantic contexts. Therefore, we propose in this paper a novel approach via Vision-Language semantic self-supervision for context-aware Pedestrian Detection (VLPD) to model explicitly semantic contexts without any extra annotations. Firstly, we propose a self-supervised Vision-Language Semantic (VLS) segmentation method, which learns both fully-supervised pedestrian detection and contextual segmentation via self-generated explicit labels of semantic classes by vision-language models. Furthermore, a self-supervised Prototypical Semantic Contrastive (PSC) learning method is proposed to better discriminate pedestrians and other classes, based on more explicit and semantic contexts obtained from VLS. Extensive experiments on popular benchmarks show that our proposed VLPD achieves superior performances over the previous state-of-the-arts, particularly under challenging circumstances like small scale and heavy occlusion. Code is available at //github.com/lmy98129/VLPD.

3D semantic segmentation is a critical task in many real-world applications, such as autonomous driving, robotics, and mixed reality. However, the task is extremely challenging due to ambiguities coming from the unstructured, sparse, and uncolored nature of the 3D point clouds. A possible solution is to combine the 3D information with others coming from sensors featuring a different modality, such as RGB cameras. Recent multi-modal 3D semantic segmentation networks exploit these modalities relying on two branches that process the 2D and 3D information independently, striving to maintain the strength of each modality. In this work, we first explain why this design choice is effective and then show how it can be improved to make the multi-modal semantic segmentation more robust to domain shift. Our surprisingly simple contribution achieves state-of-the-art performances on four popular multi-modal unsupervised domain adaptation benchmarks, as well as better results in a domain generalization scenario.

Unsupervised domain adaptation (UDA) addresses the problem of distribution shift between the unlabelled target domain and labelled source domain. While the single target domain adaptation (STDA) is well studied in the literature for both 2D and 3D vision tasks, multi-target domain adaptation (MTDA) is barely explored for 3D data despite its wide real-world applications such as autonomous driving systems for various geographical and climatic conditions. We establish an MTDA baseline for 3D point cloud data by proposing to mix the feature representations from all domains together to achieve better domain adaptation performance by an ensemble average, which we call Mixup Ensemble Average or MEnsA. With the mixed representation, we use a domain classifier to improve at distinguishing the feature representations of source domain from those of target domains in a shared latent space. In empirical validations on the challenging PointDA-10 dataset, we showcase a clear benefit of our simple method over previous unsupervised STDA and MTDA methods by large margins (up to 17.10% and 4.76% on averaged over all domain shifts).

We propose a new self-supervised method for predicting 3D human body pose from a single image. The prediction network is trained from a dataset of unlabelled images depicting people in typical poses and a set of unpaired 2D poses. By minimising the need for annotated data, the method has the potential for rapid application to pose estimation of other articulated structures (e.g. animals). The self-supervision comes from an earlier idea exploiting consistency between predicted pose under 3D rotation. Our method is a substantial advance on state-of-the-art self-supervised methods in training a mapping directly from images, without limb articulation constraints or any 3D empirical pose prior. We compare performance with state-of-the-art self-supervised methods using benchmark datasets that provide images and ground-truth 3D pose (Human3.6M, MPI-INF-3DHP). Despite the reduced requirement for annotated data, we show that the method outperforms on Human3.6M and matches performance on MPI-INF-3DHP. Qualitative results on a dataset of human hands show the potential for rapidly learning to predict 3D pose for articulated structures other than the human body.

Modeling the 3D world from sensor data for simulation is a scalable way of developing testing and validation environments for robotic learning problems such as autonomous driving. However, manually creating or re-creating real-world-like environments is difficult, expensive, and not scalable. Recent generative model techniques have shown promising progress to address such challenges by learning 3D assets using only plentiful 2D images -- but still suffer limitations as they leverage either human-curated image datasets or renderings from manually-created synthetic 3D environments. In this paper, we introduce GINA-3D, a generative model that uses real-world driving data from camera and LiDAR sensors to create realistic 3D implicit neural assets of diverse vehicles and pedestrians. Compared to the existing image datasets, the real-world driving setting poses new challenges due to occlusions, lighting-variations and long-tail distributions. GINA-3D tackles these challenges by decoupling representation learning and generative modeling into two stages with a learned tri-plane latent structure, inspired by recent advances in generative modeling of images. To evaluate our approach, we construct a large-scale object-centric dataset containing over 520K images of vehicles and pedestrians from the Waymo Open Dataset, and a new set of 80K images of long-tail instances such as construction equipment, garbage trucks, and cable cars. We compare our model with existing approaches and demonstrate that it achieves state-of-the-art performance in quality and diversity for both generated images and geometries.

Recently, significant advancements have been made in 3D generative models, however training these models across diverse domains is challenging and requires an huge amount of training data and knowledge of pose distribution. Text-guided domain adaptation methods have allowed the generator to be adapted to the target domains using text prompts, thereby obviating the need for assembling numerous data. Recently, DATID-3D presents impressive quality of samples in text-guided domain, preserving diversity in text by leveraging text-to-image diffusion. However, adapting 3D generators to domains with significant domain gaps from the source domain still remains challenging due to issues in current text-to-image diffusion models as following: 1) shape-pose trade-off in diffusion-based translation, 2) pose bias, and 3) instance bias in the target domain, resulting in inferior 3D shapes, low text-image correspondence, and low intra-domain diversity in the generated samples. To address these issues, we propose a novel pipeline called PODIA-3D, which uses pose-preserved text-to-image diffusion-based domain adaptation for 3D generative models. We construct a pose-preserved text-to-image diffusion model that allows the use of extremely high-level noise for significant domain changes. We also propose specialized-to-general sampling strategies to improve the details of the generated samples. Moreover, to overcome the instance bias, we introduce a text-guided debiasing method that improves intra-domain diversity. Consequently, our method successfully adapts 3D generators across significant domain gaps. Our qualitative results and user study demonstrates that our approach outperforms existing 3D text-guided domain adaptation methods in terms of text-image correspondence, realism, diversity of rendered images, and sense of depth of 3D shapes in the generated samples

Unsupervised domain adaptation (UDA) addresses the problem of distribution shift between the unlabeled target domain and labelled source domain. While the single target domain adaptation (STDA) is well studied in both 2D and 3D vision literature, multi-target domain adaptation (MTDA) is barely explored for 3D data despite its wide real-world applications such as autonomous driving systems for various geographical and climatic conditions. We establish an MTDA baseline for 3D point cloud data by proposing to mix the feature representations from all domains together to achieve better domain adaptation performance by an ensemble average, which we call \emph{{\bf M}ixup {\bf Ens}emble {\bf A}verage} or {\bf \emph{MEnsA}}. With the mixed representation, we use a domain classifier to improve at distinguishing the feature representations of source domain from those of target domains in a shared latent space. In extensive empirical validations on the challenging PointDA-10 dataset, we showcase a clear benefit of our simple method over previous unsupervised STDA and MTDA methods by large margins (up to $17.10\%$ and $4.76\%$ on averaged over all domain shifts). We make the code publicly available \href{//github.com/sinAshish/MEnsA_mtda}{here}\footnote{\url{//github.com/sinAshish/MEnsA_mtda}}.

Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey to focus on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area. A regularly updated project page can be found at //github.com/tinatiansjz/hmr-survey.

Semantic reconstruction of indoor scenes refers to both scene understanding and object reconstruction. Existing works either address one part of this problem or focus on independent objects. In this paper, we bridge the gap between understanding and reconstruction, and propose an end-to-end solution to jointly reconstruct room layout, object bounding boxes and meshes from a single image. Instead of separately resolving scene understanding and object reconstruction, our method builds upon a holistic scene context and proposes a coarse-to-fine hierarchy with three components: 1. room layout with camera pose; 2. 3D object bounding boxes; 3. object meshes. We argue that understanding the context of each component can assist the task of parsing the others, which enables joint understanding and reconstruction. The experiments on the SUN RGB-D and Pix3D datasets demonstrate that our method consistently outperforms existing methods in indoor layout estimation, 3D object detection and mesh reconstruction.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司