亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial intelligence (AI) has driven many information and communication technology (ICT) breakthroughs. Nonetheless, the scope of ICT systems has expanded far beyond AI since the Turing test proposal. Critically, recent AI regulation proposals adopt AI definitions affecting ICT techniques, approaches, and systems that are not AI. In some cases, even works from mathematics, statistics, and engineering would be affected. Worryingly, AI misdefinitions are observed from Western societies to the Global South. In this paper, we propose a framework to score how \textit{validated as appropriately-defined for regulation} (VADER) an AI definition is. Our online, publicly-available VADER framework scores the coverage of premises that should underlie AI definitions for regulation, which aim to (i) reproduce principles observed in other successful technology regulations, and (ii) include all AI techniques and approaches while excluding non-AI works. Regarding the latter, our score is based on a dataset of representative AI, non-AI ICT, and non-ICT examples. We demonstrate our contribution by reviewing the AI regulation proposals of key players, namely the United States, United Kingdom, European Union, and Brazil. Importantly, none of the proposals assessed achieve the appropriateness score, ranging from a revision need to a concrete risk to ICT systems and works from other fields.

相關內容

Answering logical queries on knowledge graphs (KG) poses a significant challenge for machine reasoning. The primary obstacle in this task stems from the inherent incompleteness of KGs. Existing research has predominantly focused on addressing the issue of missing edges in KGs, thereby neglecting another aspect of incompleteness: the emergence of new entities. Furthermore, most of the existing methods tend to reason over each logical operator separately, rather than comprehensively analyzing the query as a whole during the reasoning process. In this paper, we propose a query-aware prompt-fused framework named Pro-QE, which could incorporate existing query embedding methods and address the embedding of emerging entities through contextual information aggregation. Additionally, a query prompt, which is generated by encoding the symbolic query, is introduced to gather information relevant to the query from a holistic perspective. To evaluate the efficacy of our model in the inductive setting, we introduce two new challenging benchmarks. Experimental results demonstrate that our model successfully handles the issue of unseen entities in logical queries. Furthermore, the ablation study confirms the efficacy of the aggregator and prompt components.

The digital divide is the gap among population sub-groups in accessing and/or using digital technologies. For instance, older people show a lower propensity to have a broadband connection, use the Internet, and adopt new technologies than the younger ones. Motivated by the analysis of the heterogeneity in the use of digital technologies, we build a bipartite network concerning the presence of various digital skills in individuals from three different European countries: Finland, Italy, and Bulgaria. Bipartite networks provide a useful structure for representing relationships between two disjoint sets of nodes, formally called sending and receiving nodes. The goal is to perform a clustering of individuals (sending nodes) based on their digital skills (receiving nodes) for each country. In this regard, we employ a Mixture of Latent Trait Analyzers (MLTA) accounting for concomitant variables, which allows us to (i) cluster individuals according to their individual profile; (ii) analyze how socio-economic and demographic characteristics, as well as intergenerational ties, influence individual digitalization. Results show that the type of digitalization substantially depends on age, income and level of education, while the presence of children in the household seems to play an important role in the digitalization process in Italy and Finland only.

Instance segmentation is a fundamental task in computer vision with broad applications across various industries. In recent years, with the proliferation of deep learning and artificial intelligence applications, how to train effective models with limited data has become a pressing issue for both academia and industry. In the Visual Inductive Priors challenge (VIPriors2023), participants must train a model capable of precisely locating individuals on a basketball court, all while working with limited data and without the use of transfer learning or pre-trained models. We propose Memory effIciency inStance Segmentation framework based on visual inductive prior flow propagation that effectively incorporates inherent prior information from the dataset into both the data preprocessing and data augmentation stages, as well as the inference phase. Our team (ACVLAB) experiments demonstrate that our model achieves promising performance (0.509 [email protected]:0.95) even under limited data and memory constraints.

Instruction tuning effectively optimizes Large Language Models (LLMs) for downstream tasks. Due to the changing environment in real-life applications, LLMs necessitate continual task-specific adaptation without catastrophic forgetting. Considering the heavy computational cost, replay-based Continual Learning (CL) methods are the simplest and most widely used for LLMs to address the forgetting issue. However, traditional replay-based methods do not fully utilize instructions to customize the replay strategy. In this work, we propose a novel paradigm called Instruction-based Continual Learning (InsCL). InsCL dynamically replays previous data based on task similarity, calculated by Wasserstein Distance with instructions. Moreover, we further introduce an Instruction Information Metric (InsInfo) to quantify the complexity and diversity of instructions. According to InsInfo, InsCL guides the replay process more inclined to high-quality data. We conduct extensive experiments over 16 tasks with different training orders, observing consistent performance improvements of InsCL. When all tasks have been trained, InsCL achieves performance gains of 3.0 Relative Gain compared with Random Replay, and 27.96 Relative Gain compared with No Replay.

The use of Artificial Intelligence (AI) based on data-driven algorithms has become ubiquitous in today's society. Yet, in many cases and especially when stakes are high, humans still make final decisions. The critical question, therefore, is whether AI helps humans make better decisions as compared to a human alone or AI an alone. We introduce a new methodological framework that can be used to answer experimentally this question with no additional assumptions. We measure a decision maker's ability to make correct decisions using standard classification metrics based on the baseline potential outcome. We consider a single-blinded experimental design, in which the provision of AI-generated recommendations is randomized across cases with a human making final decisions. Under this experimental design, we show how to compare the performance of three alternative decision-making systems--human-alone, human-with-AI, and AI-alone. We apply the proposed methodology to the data from our own randomized controlled trial of a pretrial risk assessment instrument. We find that AI recommendations do not improve the classification accuracy of a judge's decision to impose cash bail. Our analysis also shows that AI-alone decisions generally perform worse than human decisions with or without AI assistance. Finally, AI recommendations tend to impose cash bail on non-white arrestees more often than necessary when compared to white arrestees.

There are now many explainable AI methods for understanding the decisions of a machine learning model. Among these are those based on counterfactual reasoning, which involve simulating features changes and observing the impact on the prediction. This article proposes to view this simulation process as a source of creating a certain amount of knowledge that can be stored to be used, later, in different ways. This process is illustrated in the additive model and, more specifically, in the case of the naive Bayes classifier, whose interesting properties for this purpose are shown.

In ecological and environmental contexts, management actions must sometimes be chosen urgently. Value of information (VoI) analysis provides a quantitative toolkit for projecting the improved management outcomes expected after making additional measurements. However, traditional VoI analysis reports metrics as expected values (i.e. risk-neutral). This can be problematic because expected values hide uncertainties in projections. The true value of a measurement will only be known after the measurement's outcome is known, leaving large uncertainty in the measurement's value before it is performed. As a result, the expected value metrics produced in traditional VoI analysis may not align with the priorities of a risk-averse decision-maker who wants to avoid low-value measurement outcomes. In the present work, we introduce four new VoI metrics that can address a decision-maker's risk-aversion to different measurement outcomes. We demonstrate the benefits of the new metrics with two ecological case studies for which traditional VoI analysis has been previously applied. Using the new metrics, we also demonstrate a clear mathematical link between the often-separated environmental decision-making disciplines of VoI and optimal design of experiments. This mathematical link has the potential to catalyse future collaborations between ecologists and statisticians to work together to quantitatively address environmental decision-making questions of fundamental importance. Overall, the introduced VoI metrics complement existing metrics to provide decision-makers with a comprehensive view of the value of, and risks associated with, a proposed monitoring or measurement activity. This is critical for improved environmental outcomes when decisions must be urgently made.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.

北京阿比特科技有限公司