亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the facility location problem in two dimensions. In particular, we consider a setting where agents have Euclidean preferences, defined by their ideal points, for a facility to be located in $\mathbb{R}^2$. For the minisum objective and an odd number of agents, we show that the coordinate-wise median mechanism (CM) has a worst-case approximation ratio (AR) of $\sqrt{2}\frac{\sqrt{n^2+1}}{n+1}$. Further, we show that CM has the lowest AR for this objective in the class of deterministic, anonymous, and strategyproof mechanisms. For the $p-norm$ social welfare objective, we find that the AR for CM is bounded above by $2^{\frac{3}{2}-\frac{2}{p}}$ for $p\geq 2$. Since any deterministic strategyproof mechanism must have AR at least $2^{1-\frac{1}{p}}$ (\citet{feigenbaum_approximately_2017}), our upper bound suggests that the CM is (at worst) very nearly optimal. We conjecture that the approximation ratio of coordinate-wise median is actually equal to the lower bound $2^{1-\frac{1}{p}}$ (as is the case for $p=2$ and $p=\infty$) for any $p\geq 2$.

相關內容

The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.

The Schrijver graph $S(n,k)$ is defined for integers $n$ and $k$ with $n \geq 2k$ as the graph whose vertices are all the $k$-subsets of $\{1,2,\ldots,n\}$ that do not include two consecutive elements modulo $n$, where two such sets are adjacent if they are disjoint. A result of Schrijver asserts that the chromatic number of $S(n,k)$ is $n-2k+2$ (Nieuw Arch. Wiskd., 1978). In the computational Schrijver problem, we are given an access to a coloring of the vertices of $S(n,k)$ with $n-2k+1$ colors, and the goal is to find a monochromatic edge. The Schrijver problem is known to be complete in the complexity class $\mathsf{PPA}$. We prove that it can be solved by a randomized algorithm with running time $n^{O(1)} \cdot k^{O(k)}$, hence it is fixed-parameter tractable with respect to the parameter $k$.

We consider the question of adaptive data analysis within the framework of convex optimization. We ask how many samples are needed in order to compute $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients queried by gradient descent, and we provide two intermediate answers to this question. First, we show that for a general analyst (not necessarily gradient descent) $\Omega(1/\epsilon^3)$ samples are required. This rules out the possibility of a foolproof mechanism. Our construction builds upon a new lower bound (that may be of interest of its own right) for an analyst that may ask several non adaptive questions in a batch of fixed and known $T$ rounds of adaptivity and requires a fraction of true discoveries. We show that for such an analyst $\Omega (\sqrt{T}/\epsilon^2)$ samples are necessary. Second, we show that, under certain assumptions on the oracle, in an interaction with gradient descent $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary. Our assumptions are that the oracle has only \emph{first order access} and is \emph{post-hoc generalizing}. First order access means that it can only compute the gradients of the sampled function at points queried by the algorithm. Our assumption of \emph{post-hoc generalization} follows from existing lower bounds for statistical queries. More generally then, we provide a generic reduction from the standard setting of statistical queries to the problem of estimating gradients queried by gradient descent. These results are in contrast with classical bounds that show that with $O(1/\epsilon^2)$ samples one can optimize the population risk to accuracy of $O(\epsilon)$ but, as it turns out, with spurious gradients.

Given a set $P$ of $n$ points in the plane, the $k$-center problem is to find $k$ congruent disks of minimum possible radius such that their union covers all the points in $P$. The $2$-center problem is a special case of the $k$-center problem that has been extensively studied in the recent past \cite{CAHN,HT,SH}. In this paper, we consider a generalized version of the $2$-center problem called \textit{proximity connected} $2$-center (PCTC) problem. In this problem, we are also given a parameter $\delta\geq 0$ and we have the additional constraint that the distance between the centers of the disks should be at most $\delta$. Note that when $\delta=0$, the PCTC problem is reduced to the $1$-center(minimum enclosing disk) problem and when $\delta$ tends to infinity, it is reduced to the $2$-center problem. The PCTC problem first appeared in the context of wireless networks in 1992 \cite{ACN0}, but obtaining a nontrivial deterministic algorithm for the problem remained open. In this paper, we resolve this open problem by providing a deterministic $O(n^2\log n)$ time algorithm for the problem.

In this paper we propose a methodology to accelerate the resolution of the so-called "Sorted L-One Penalized Estimation" (SLOPE) problem. Our method leverages the concept of "safe screening", well-studied in the literature for \textit{group-separable} sparsity-inducing norms, and aims at identifying the zeros in the solution of SLOPE. More specifically, we derive a set of \(\tfrac{n(n+1)}{2}\) inequalities for each element of the \(n\)-dimensional primal vector and prove that the latter can be safely screened if some subsets of these inequalities are verified. We propose moreover an efficient algorithm to jointly apply the proposed procedure to all the primal variables. Our procedure has a complexity \(\mathcal{O}(n\log n + LT)\) where \(T\leq n\) is a problem-dependent constant and \(L\) is the number of zeros identified by the tests. Numerical experiments confirm that, for a prescribed computational budget, the proposed methodology leads to significant improvements of the solving precision.

Category theory can be used to state formulas in First-Order Logic without using set membership. Several notable results in logic such as proof of the continuum hypothesis can be elegantly rewritten in category theory. We propose in this paper a reformulation of the usual set-theoretical semantics of the description logic $\mathcal{ALC}$ by using categorical language. In this setting, ALC concepts are represented as objects, concept subsumptions as arrows, and memberships as logical quantifiers over objects and arrows of categories. Such a category-theoretical semantics provides a more modular representation of the semantics of $\mathcal{ALC}$ and a new way to design algorithms for reasoning.

We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.

How to recover a probability measure with sparse support from particular moments? This problem has been the focus of research in theoretical computer science and neural computing. However, there is no polynomial-time algorithm for the recovery. The best algorithm for the recovery requires $O(2^{\text{poly}(1/\epsilon)})$ for $\epsilon$-accurate recovery. We propose the first poly-time recovery method from carefully designed moments that only requires $O(\log(1/\epsilon)/\epsilon^2)$ computations for an $\epsilon$-accurate recovery. This method relies on the recovery of a planted two-layer neural network with two-dimensional inputs, a finite width, and zero-one activation. For such networks, we establish the first global convergence of gradient descent and demonstrate its application in sparse measure recovery.

The problem of scheduling unrelated machines has been studied since the inception of algorithmic mechanism design~\cite{NR99}. It is a resource allocation problem that entails assigning $m$ tasks to $n$ machines for execution. Machines are regarded as strategic agents who may lie about their execution costs so as to minimize their allocated workload. To address the situation when monetary payment is not an option to compensate the machines' costs, \citeauthor{DBLP:journals/mst/Koutsoupias14} [2014] devised two \textit{truthful} mechanisms, K and P respectively, that achieve an approximation ratio of $\frac{n+1}{2}$ and $n$, for social cost minimization. In addition, no truthful mechanism can achieve an approximation ratio better than $\frac{n+1}{2}$. Hence, mechanism K is optimal. While approximation ratio provides a strong worst-case guarantee, it also limits us to a comprehensive understanding of mechanism performance on various inputs. This paper investigates these two scheduling mechanisms beyond the worst case. We first show that mechanism K achieves a smaller social cost than mechanism P on every input. That is, mechanism K is pointwise better than mechanism P. Next, for each task $j$, when machines' execution costs $t_i^j$ are independent and identically drawn from a task-specific distribution $F^j(t)$, we show that the average-case approximation ratio of mechanism K converges to a constant. This bound is tight for mechanism K. For a better understanding of this distribution dependent constant, on the one hand, we estimate its value by plugging in a few common distributions; on the other, we show that this converging bound improves a known bound \cite{DBLP:conf/aaai/Zhang18} which only captures the single-task setting. Last, we find that the average-case approximation ratio of mechanism P converges to the same constant.

Holonomic functions play an essential role in Computer Algebra since they allow the application of many symbolic algorithms. Among all algorithmic attempts to find formulas for power series, the holonomic property remains the most important requirement to be satisfied by the function under consideration. The targeted functions mainly summarize that of meromorphic functions. However, expressions like $\tan(z)$, $z/(\exp(z)-1)$, $\sec(z)$, etc., particularly, reciprocals, quotients and compositions of holonomic functions, are generally not holonomic. Therefore their power series are inaccessible by the holonomic framework. From the mathematical dictionaries, one can observe that most of the known closed-form formulas of non-holonomic power series involve another sequence whose evaluation depends on some finite summations. In the case of $\tan(z)$ and $\sec(z)$ the corresponding sequences are the Bernoulli and Euler numbers, respectively. Thus providing a symbolic approach that yields complete representations when linear summations for power series coefficients of non-holonomic functions appear, might be seen as a step forward towards the representation of non-holonomic power series. By adapting the method of ansatz with undetermined coefficients, we build an algorithm that computes least-order quadratic differential equations with polynomial coefficients for a large class of non-holonomic functions. A differential equation resulting from this procedure is converted into a recurrence equation by applying the Cauchy product formula and rewriting powers into polynomials and derivatives into shifts. Finally, using enough initial values we are able to give normal form representations to characterize several non-holonomic power series and prove non-trivial identities. We discuss this algorithm and its implementation for Maple 2022.

北京阿比特科技有限公司