亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The solution in sense of Prager&Synge is the alternative to the commonly used notion of the numerical solution, which is considered as a limit of grid functions at mesh refinement. Prager&Synge solution is defined as a hypersphere containing the projection of the true solution of the system of partial differentiation equations (PDE) onto the computational grid and does not use any asymptotics. In the original variant it is determined using orthogonal properties specific for certain equations. In the proposed variant, the center and radius of the hypersphere is estimated using the ensemble of numerical solutions obtained by independent algorithms. This approach may be easily expanded for solutions of an arbitrary system of partial differentiation equations that significantly expands the domain of its applicability. Several options for the computation of the Prager&Synge solution are considered and compared herein. The first one is based on the search for the orthogonal truncation errors and their transformation. The second is based on the orthogonalization of approximation errors obtained using the defect correction method and applies a superposition of numerical solutions. These options are intrusive. In third option (nonintrusive) the information regarding orthogonality of errors, which is crucial for the Prager&Synge approach method, is replaced by information that stems from the properties of the ensemble of numerical solutions, obtained by independent numerical algorithms. The values of the angle between the truncation errors on such ensemble or the distances between elements of the ensemble may be used to replace the orthogonality. The variant based on the width of the ensemble of independent numerical solutions does not require any additional a priori information and is the approximate nonintrusive version of the method based on the orthogonalization of approximation errors.

相關內容

This paper is devoted to find the numerical solutions of one dimensional general nonlinear system of third-order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual method. We derive mathematical formulations in matrix form, in details, by exploiting Bernstein polynomials as basis functions. A reasonable accuracy is found when the proposed method is used on few examples. At the end of the study, a comparison is made between the approximate and exact solutions, and also with the solutions of the existing methods. Our results converge monotonically to the exact solutions. In addition, we show that the the derived formulations may be applicable by reducing higher order complicated BVP into a lower order system of BVPs, and the performance of the numerical solutions is satisfactory.

Public sector use of AI has been quietly on the rise for the past decade, but only recently have efforts to regulate it entered the cultural zeitgeist. While simple to articulate, promoting ethical and effective roll outs of AI systems in government is a notoriously elusive task. On the one hand there are hard-to-address pitfalls associated with AI-based tools, including concerns about bias towards marginalized communities, safety, and gameability. On the other, there is pressure not to make it too difficult to adopt AI, especially in the public sector which typically has fewer resources than the private sector$\unicode{x2014}$conserving scarce government resources is often the draw of using AI-based tools in the first place. These tensions create a real risk that procedures built to ensure marginalized groups are not hurt by government use of AI will, in practice, be performative and ineffective. To inform the latest wave of regulatory efforts in the United States, we look to jurisdictions with mature regulations around government AI use. We report on lessons learned by officials in Brazil, Singapore and Canada, who have collectively implemented risk categories, disclosure requirements and assessments into the way they procure AI tools. In particular, we investigate two implemented checklists: the Canadian Directive on Automated Decision-Making (CDADM) and the World Economic Forum's AI Procurement in a Box (WEF). We detail three key pitfalls around expertise, risk frameworks and transparency, that can decrease the efficacy of regulations aimed at government AI use and suggest avenues for improvement.

With the advancement of Internet of Things (IoT) technology, its applications span various sectors such as public, industrial, private and military. In particular, the drone sector has gained significant attention for both commercial and military purposes. As a result, there has been a surge in research focused on vulnerability analysis of drones. However, most security research to mitigate threats to IoT devices has focused primarily on networks, firmware and mobile applications. Of these, the use of fuzzing to analyze the security of firmware requires emulation of the firmware. However, when it comes to drone firmware, the industry lacks emulation and automated fuzzing tools. This is largely due to challenges such as limited input interfaces, firmware encryption and signatures. While it may be tempting to assume that existing emulators and automated analyzers for IoT devices can be applied to drones, practical applications have proven otherwise. In this paper, we discuss the challenges of dynamically analyzing drone firmware and propose potential solutions. In addition, we demonstrate the effectiveness of our methodology by applying it to DJI drones, which have the largest market share.

Human knowledge is made up of the conceptual structures of many communities of interest. In order to establish coherence in human knowledge representation, it is important to enable communication between the conceptual structures of different communities The conceptual structures of any particular community is representable in an ontology. Such a ontology provides a formal linguistic standard for that community. However, a standard community ontology is established for various purposes, and makes choices that force a given interpretation, while excluding others that may be equally valid for other purposes. Hence, a given representation is relative to the purpose for that representation. Due to this relativity of representation, in the larger scope of all human knowledge it is more important to standardize methods and frameworks for relating ontologies than to standardize any particular choice of ontology. The standardization of methods and frameworks is called the semantic integration of ontologies.

The Neural Tangent Kernel (NTK) has emerged as a fundamental concept in the study of wide Neural Networks. In particular, it is known that the positivity of the NTK is directly related to the memorization capacity of sufficiently wide networks, i.e., to the possibility of reaching zero loss in training, via gradient descent. Here we will improve on previous works and obtain a sharp result concerning the positivity of the NTK of feedforward networks of any depth. More precisely, we will show that, for any non-polynomial activation function, the NTK is strictly positive definite. Our results are based on a novel characterization of polynomial functions which is of independent interest.

We consider the Ornstein-Uhlenbeck (OU) process, a stochastic process widely used in finance, physics, and biology. Parameter estimation of the OU process is a challenging problem. Thus, we review traditional tracking methods and compare them with novel applications of deep learning to estimate the parameters of the OU process. We use a multi-layer perceptron to estimate the parameters of the OU process and compare its performance with traditional parameter estimation methods, such as the Kalman filter and maximum likelihood estimation. We find that the multi-layer perceptron can accurately estimate the parameters of the OU process given a large dataset of observed trajectories; however, traditional parameter estimation methods may be more suitable for smaller datasets.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司