This work investigates the modeling and optimization of beyond diagonal reconfigurable intelligent surface (BD-RIS), which generalizes conventional RIS with diagonal phase shift matrices and provides additional flexibility for manipulating wireless channels, in wideband communication systems. Specifically, we start from the signal modeling of the BD-RIS-aided orthogonal frequency division multiplexing (OFDM) system, which bridges the time-domain and frequency-domain channels, and explicitly shows the frequency dependence of the BD-RIS response. We next characterize the frequency dependence of the BD-RIS response based on circuit models. Benefiting from the admittance parameter analysis, we model individually each tunable admittance component of BD-RIS and derive an approximated linear expression with respect to the frequency of the transmit signals. With the proposed signal model for the BD-RIS-aided OFDM system and the frequency-dependent BD-RIS model, we propose algorithms to optimize the BD-RIS and the power allocation at the transmitter to maximize the average rate for a BD-RIS-aided OFDM system. Finally, simulation results show that BD-RIS outperforms conventional RIS in the OFDM system. More importantly, the impact of wideband modeling of BD-RIS on the system performance becomes more significant as the circuit complexity of BD-RIS architectures increases.
Advances in neural computation have predominantly relied on the gradient backpropagation algorithm (BP). However, the recent shift towards non-stationary data modeling has highlighted the limitations of this heuristic, exposing that its adaptation capabilities are far from those seen in biological brains. Unlike BP, where weight updates are computed through a reverse error propagation path, Hebbian learning dynamics provide synaptic updates using only information within the layer itself. This has spurred interest in biologically plausible learning algorithms, hypothesized to overcome BP's shortcomings. In this context, Hinton recently introduced the Forward-Forward Algorithm (FFA), which employs local learning rules for each layer and has empirically proven its efficacy in multiple data modeling tasks. In this work we argue that when employing a squared Euclidean norm as a goodness function driving the local learning, the resulting FFA is equivalent to a neo-Hebbian Learning Rule. To verify this result, we compare the training behavior of FFA in analog networks with its Hebbian adaptation in spiking neural networks. Our experiments demonstrate that both versions of FFA produce similar accuracy and latent distributions. The findings herein reported provide empirical evidence linking biological learning rules with currently used training algorithms, thus paving the way towards extrapolating the positive outcomes from FFA to Hebbian learning rules. Simultaneously, our results imply that analog networks trained under FFA could be directly applied to neuromorphic computing, leading to reduced energy usage and increased computational speed.
This work introduces EUvsDisinfo, a multilingual dataset of trustworthy and disinformation articles related to pro-Kremlin themes. It is sourced directly from the debunk articles written by experts leading the EUvsDisinfo project. Our dataset is the largest to-date resource in terms of the overall number of articles and distinct languages. It also provides the largest topical and temporal coverage. Using this dataset, we investigate the dissemination of pro-Kremlin disinformation across different languages, uncovering language-specific patterns targeting specific disinformation topics. We further analyse the evolution of topic distribution over an eight-year period, noting a significant surge in disinformation content before the full-scale invasion of Ukraine in 2022. Lastly, we demonstrate the dataset's applicability in training models to effectively distinguish between disinformation and trustworthy content in multilingual settings.
Leveraging the development of structural causal model (SCM), researchers can establish graphical models for exploring the causal mechanisms behind machine learning techniques. As the complexity of machine learning applications rises, single-world interventionism causal analysis encounters theoretical adaptation limitations. Accordingly, cross-world counterfactual approach extends our understanding of causality beyond observed data, enabling hypothetical reasoning about alternative scenarios. However, the joint involvement of cross-world variables, encompassing counterfactual variables and real-world variables, challenges the construction of the graphical model. Twin network is a subtle attempt, establishing a symbiotic relationship, to bridge the gap between graphical modeling and the introduction of counterfactuals albeit with room for improvement in generalization. In this regard, we demonstrate the theoretical breakdowns of twin networks in certain cross-world counterfactual scenarios. To this end, we propose a novel teleporter theory to establish a general and simple graphical representation of counterfactuals, which provides criteria for determining teleporter variables to connect multiple worlds. In theoretical application, we determine that introducing the proposed teleporter theory can directly obtain the conditional independence between counterfactual variables and real-world variables from the cross-world SCM without requiring complex algebraic derivations. Accordingly, we can further identify counterfactual causal effects through cross-world symbolic derivation. We demonstrate the generality of the teleporter theory to the practical application. Adhering to the proposed theory, we build a plug-and-play module, and the effectiveness of which are substantiated by experiments on benchmarks.
We study the problem of data-driven background estimation, arising in the search of physics signals predicted by the Standard Model at the Large Hadron Collider. Our work is motivated by the search for the production of pairs of Higgs bosons decaying into four bottom quarks. A number of other physical processes, known as background, also share the same final state. The data arising in this problem is therefore a mixture of unlabeled background and signal events, and the primary aim of the analysis is to determine whether the proportion of unlabeled signal events is nonzero. A challenging but necessary first step is to estimate the distribution of background events. Past work in this area has determined regions of the space of collider events where signal is unlikely to appear, and where the background distribution is therefore identifiable. The background distribution can be estimated in these regions, and extrapolated into the region of primary interest using transfer learning with a multivariate classifier. We build upon this existing approach in two ways. First, we revisit this method by developing a customized residual neural network which is tailored to the structure and symmetries of collider data. Second, we develop a new method for background estimation, based on the optimal transport problem, which relies on modeling assumptions distinct from earlier work. These two methods can serve as cross-checks for each other in particle physics analyses, due to the complementarity of their underlying assumptions. We compare their performance on simulated double Higgs boson data.
Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.