亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The virtual element method was introduced 10 years ago and it has generated a large number of theoretical results and applications ever since. Here, we overview the main mathematical results concerning the stabilization term of the method as an introduction for newcomers in the field. In particular, we summarize the proofs of some results for two dimensional ``nodal'' conforming and nonconforming virtual element spaces to pinpoint the essential tools used in the stability analysis. We discuss their extensions to several other virtual elements. Finally, we show several ways to prove interpolation estimates, including a recent one that is based on employing the stability bounds.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Anomalous diffusion in the presence or absence of an external force field is often modelled in terms of the fractional evolution equations, which can involve the hyper-singular source term. For this case, conventional time stepping methods may exhibit a severe order reduction. Although a second-order numerical algorithm is provided for the subdiffusion model with a simple hyper-singular source term $t^{\mu}$, $-2<\mu<-1$ in [arXiv:2207.08447], the convergence analysis remain to be proved. To fill in these gaps, we present a simple and robust smoothing method for the hyper-singular source term, where the Hadamard finite-part integral is introduced. This method is based on the smoothing/ID$m$-BDF$k$ method proposed by the authors [Shi and Chen, SIAM J. Numer. Anal., to appear] for subdiffusion equation with a weakly singular source term. We prove that the $k$th-order convergence rate can be restored for the diffusion-wave case $\gamma \in (1,2)$ and sketch the proof for the subdiffusion case $\gamma \in (0,1)$, even if the source term is hyper-singular and the initial data is not compatible. Numerical experiments are provided to confirm the theoretical results.

A family of stabilizer-free $P_k$ virtual elements are constructed on triangular meshes. When choosing an accurate and proper interpolation, the stabilizer of the virtual elements can be dropped while the quasi-optimality is kept. The interpolating space here is the space of continuous $P_k$ polynomials on the Hsieh-Clough-Tocher macro-triangle, where the macro-triangle is defined by connecting three vertices of a triangle with its barycenter. We show that such an interpolation preserves $P_k$ polynomials locally and enforces the coerciveness of the resulting bilinear form. Consequently the stabilizer-free virtual element solutions converge at the optimal order. Numerical tests are provided to confirm the theory and to be compared with existing virtual elements.

Stochastic memoization is a higher-order construct of probabilistic programming languages that is key in Bayesian nonparametrics, a modular approach that allows us to extend models beyond their parametric limitations and compose them in an elegant and principled manner. Stochastic memoization is simple and useful in practice, but semantically elusive, particularly regarding dataflow transformations. As the naive implementation resorts to the state monad, which is not commutative, it is not clear if stochastic memoization preserves the dataflow property -- i.e., whether we can reorder the lines of a program without changing its semantics, provided the dataflow graph is preserved. In this paper, we give an operational and categorical semantics to stochastic memoization and name generation in the context of a minimal probabilistic programming language, for a restricted class of functions. Our contribution is a first model of stochastic memoization of constant Bernoulli functions with a non-enumerable type, which validates data flow transformations, bridging the gap between traditional probability theory and higher-order probability models. Our model uses a presheaf category and a novel probability monad on it.

We present a nonparametric graphical model. Our model uses an undirected graph that represents conditional independence for general random variables defined by the conditional dependence coefficient (Azadkia and Chatterjee (2021)). The set of edges of the graph are defined as $E=\{(i,j):R_{i,j}\neq 0\}$, where $R_{i,j}$ is the conditional dependence coefficient for $X_i$ and $X_j$ given $(X_1,\ldots,X_p) \backslash \{X_{i},X_{j}\}$. We propose a graph structure learning by two steps selection procedure: first, we compute the matrix of sample version of the conditional dependence coefficient $\widehat{R_{i,j}}$; next, for some prespecificated threshold $\lambda>0$ we choose an edge $\{i,j\}$ if $ \left|\widehat{R_{i,j}} \right| \geq \lambda.$ The graph recovery structure has been evaluated on artificial and real datasets. We also applied a slight modification of our graph recovery procedure for learning partial correlation graphs for the elliptical distribution.

Hierarchical matrices approximate a given matrix by a decomposition into low-rank submatrices that can be handled efficiently in factorized form. $\mathcal{H}^2$-matrices refine this representation following the ideas of fast multipole methods in order to achieve linear, i.e., optimal complexity for a variety of important algorithms. The matrix multiplication, a key component of many more advanced numerical algorithms, has so far proven tricky: the only linear-time algorithms known so far either require the very special structure of HSS-matrices or need to know a suitable basis for all submatrices in advance. In this article, a new and fairly general algorithm for multiplying $\mathcal{H}^2$-matrices in linear complexity with adaptively constructed bases is presented. The algorithm consists of two phases: first an intermediate representation with a generalized block structure is constructed, then this representation is re-compressed in order to match the structure prescribed by the application. The complexity and accuracy are analysed and numerical experiments indicate that the new algorithm can indeed be significantly faster than previous attempts.

A general a posteriori error analysis applies to five lowest-order finite element methods for two fourth-order semi-linear problems with trilinear non-linearity and a general source. A quasi-optimal smoother extends the source term to the discrete trial space, and more importantly, modifies the trilinear term in the stream-function vorticity formulation of the incompressible 2D Navier-Stokes and the von K\'{a}rm\'{a}n equations. This enables the first efficient and reliable a posteriori error estimates for the 2D Navier-Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous Galerkin, $C^0$ interior penalty, and WOPSIP discretizations with piecewise quadratic polynomials.

Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO2 plume predictions near, and far away, from the monitoring wells.

Transition amplitudes and transition probabilities are relevant to many areas of physics simulation, including the calculation of response properties and correlation functions. These quantities can also be related to solving linear systems of equations. Here we present three related algorithms for calculating transition probabilities. First, we extend a previously published short-depth algorithm, allowing for the two input states to be non-orthogonal. Building on this first procedure, we then derive a higher-depth algorithm based on Trotterization and Richardson extrapolation that requires fewer circuit evaluations. Third, we introduce a tunable algorithm that allows for trading off circuit depth and measurement complexity, yielding an algorithm that can be tailored to specific hardware characteristics. Finally, we implement proof-of-principle numerics for models in physics and chemistry and for a subroutine in variational quantum linear solving (VQLS). The primary benefits of our approaches are that (a) arbitrary non-orthogonal states may now be used with small increases in quantum resources, (b) we (like another recently proposed method) entirely avoid subroutines such as the Hadamard test that may require three-qubit gates to be decomposed, and (c) in some cases fewer quantum circuit evaluations are required as compared to the previous state-of-the-art in NISQ algorithms for transition probabilities.

Iterative refinement (IR) is a popular scheme for solving a linear system of equations based on gradually improving the accuracy of an initial approximation. Originally developed to improve upon the accuracy of Gaussian elimination, interest in IR has been revived because of its suitability for execution on fast low-precision hardware such as analog devices and graphics processing units. IR generally converges when the error associated with the solution method is small, but is known to diverge when this error is large. We propose and analyze a novel enhancement to the IR algorithm by adding a line search optimization step that guarantees the algorithm will not diverge. Numerical experiments verify our theoretical results and illustrate the effectiveness of our proposed scheme.

In this paper we introduce a multilevel Picard approximation algorithm for semilinear parabolic partial integro-differential equations (PIDEs). We prove that the numerical approximation scheme converges to the unique viscosity solution of the PIDE under consideration. To that end, we derive a Feynman-Kac representation for the unique viscosity solution of the semilinear PIDE, extending the classical Feynman-Kac representation for linear PIDEs. Furthermore, we show that the algorithm does not suffer from the curse of dimensionality, i.e. the computational complexity of the algorithm is bounded polynomially in the dimension $d$ and the reciprocal of the prescribed accuracy $\varepsilon$. We also provide a numerical example in up to 10'000 dimensions to demonstrate its applicability.

北京阿比特科技有限公司