亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Over the past decade, programmatic advertising has received a great deal of attention in the online advertising industry. A real-time bidding (RTB) system is rapidly becoming the most popular method to buy and sell online advertising impressions. Within the RTB system, demand-side platforms (DSP) aim to spend advertisers' campaign budgets efficiently while maximizing profit, seeking impressions that result in high user responses, such as clicks or installs. In the current study, we investigate the process of predicting a mobile gaming app installation from the point of view of a particular DSP, while paying attention to user privacy, and exploring the trade-off between privacy preservation and model performance. There are multiple levels of potential threats to user privacy, depending on the privacy leaks associated with the data-sharing process, such as data transformation or de-anonymization. To address these concerns, privacy-preserving techniques were proposed, such as cryptographic approaches, for training privacy-aware machine-learning models. However, the ability to train a mobile gaming app installation prediction model without using user-level data, can prevent these threats and protect the users' privacy, even though the model's ability to predict may be impaired. Additionally, current laws might force companies to declare that they are collecting data, and might even give the user the option to opt out of such data collection, which might threaten companies' business models in digital advertising, which are dependent on the collection and use of user-level data. We conclude that privacy-aware models might still preserve significant capabilities, enabling companies to make better decisions, dependent on the privacy-efficacy trade-off utility function of each case.

相關內容

 是指運行于手機上的游戲軟件。目前用來編寫手機最多的程序語言是Java,見J2ME;其次是C語言。

The adoption of virtual reality (VR) technologies has rapidly gained momentum in recent years as companies around the world begin to position the so-called "metaverse" as the next major medium for accessing and interacting with the internet. While consumers have become accustomed to a degree of data harvesting on the web, the real-time nature of data sharing in the metaverse indicates that privacy concerns are likely to be even more prevalent in the new "Web 3.0." Research into VR privacy has demonstrated that a plethora of sensitive personal information is observable by various would-be adversaries from just a few minutes of telemetry data. On the other hand, we have yet to see VR parallels for many privacy-preserving tools aimed at mitigating threats on conventional platforms. This paper aims to systematize knowledge on the landscape of VR privacy threats and countermeasures by proposing a comprehensive taxonomy of data attributes, protections, and adversaries based on the study of 68 collected publications. We complement our qualitative discussion with a statistical analysis of the risk associated with various data sources inherent to VR in consideration of the known attacks and defenses. By focusing on highlighting the clear outstanding opportunities, we hope to motivate and guide further research into this increasingly important field.

The importance of unspanned macroeconomic variables for Dynamic Term Structure Models has been intensively discussed in the literature. To our best knowledge the earlier studies considered only linear interactions between the economy and the real-world dynamics of interest rates in DTSMs. We propose a generalized modelling setup for Gaussian DTSMs which allows for unspanned nonlinear associations between the two and we exploit it in forecasting. Specifically, we construct a custom sequential Monte Carlo estimation and forecasting scheme where we introduce Gaussian Process priors to model nonlinearities. Sequential scheme we propose can also be used with dynamic portfolio optimization to assess the potential of generated economic value to investors. The methodology is presented using US Treasury data and selected macroeconomic indices. Namely, we look at core inflation and real economic activity. We contrast the results obtained from the nonlinear model with those stemming from an application of a linear model. Unlike for real economic activity, in case of core inflation we find that, compared to linear models, application of nonlinear models leads to statistically significant gains in economic value across considered maturities.

Rehabilitation training for patients with motor disabilities usually requires specialized devices in rehabilitation centers. Home-based multi-purpose training would significantly increase treatment accessibility and reduce medical costs. While it is unlikely to equip a set of rehabilitation robots at home, we investigate the feasibility to use the general-purpose collaborative robot for rehabilitation therapies. In this work, we developed a new system for multi-purpose upper-limb rehabilitation training using a generic robot arm with human motor feedback and preference. We integrated surface electromyography, force/torque sensors, RGB-D cameras, and robot controllers with the Robot Operating System to enable sensing, communication, and control of the system. Imitation learning methods were adopted to imitate expert-provided training trajectories which could adapt to subject capabilities to facilitate in-home training. Our rehabilitation system is able to perform gross motor function and fine motor skill training with a gripper-based end-effector. We simulated system control in Gazebo and training effects (muscle activation level) in OpenSim and evaluated its real performance with human subjects. For all the subjects enrolled, our system achieved better training outcomes compared to specialist-assisted rehabilitation under the same conditions. Our work demonstrates the potential of utilizing collaborative robots for in-home motor rehabilitation training.

Inertial-based navigation refers to the navigation methods or systems that have inertial information or sensors as the core part and integrate a spectrum of other kinds of sensors for enhanced performance. Through a series of papers, the authors attempt to explore information blending of inertial-based navigation by a polynomial optimization method. The basic idea is to model rigid motions as finite-order polynomials and then attacks the involved navigation problems by optimally solving their coefficients, taking into considerations the constraints posed by inertial sensors and others. In the current paper, a continuous-time attitude estimation approach is proposed, which transforms the attitude estimation into a constant parameter determination problem by the polynomial optimization. Specifically, the continuous attitude is first approximated by a Chebyshev polynomial, of which the unknown Chebyshev coefficients are determined by minimizing the weighted residuals of initial conditions, dynamics and measurements. We apply the derived estimator to the attitude estimation with the magnetic and inertial sensors. Simulation and field tests show that the estimator has much better stability and faster convergence than the traditional extended Kalman filter does, especially in the challenging large initial state error scenarios.

Current Hardware Trojan (HT) detection techniques are mostly developed based on a limited set of HT benchmarks. Existing HT benchmarks circuits are generated with multiple shortcomings, i.e., i) they are heavily biased by the designers' mindset when they are created, and ii) they are created through a one-dimensional lens, mainly the signal activity of nets. To address these shortcomings, we introduce the first automated reinforcement learning (RL) HT insertion and detection framework. In the insertion phase, an RL agent explores the circuits and finds different locations that are best for keeping inserted HTs hidden. On the defense side, we introduce a multi-criteria RL-based detector that generates test vectors to discover the existence of HTs. Using the proposed framework, one can explore the HT insertion and detection design spaces to break the human mindset limitations as well as the benchmark issues, ultimately leading toward the next-generation of innovative detectors. Our HT toolset is open-source to accelerate research in this field and reduce the initial setup time for newcomers. We demonstrate the efficacy of our framework on ISCAS-85 benchmarks and provide the attack and detection success rates and define a methodology for comparing our techniques.

A private learner is trained on a sample of labeled points and generates a hypothesis that can be used for predicting the labels of newly sampled points while protecting the privacy of the training set [Kasiviswannathan et al., FOCS 2008]. Research uncovered that private learners may need to exhibit significantly higher sample complexity than non-private learners as is the case with, e.g., learning of one-dimensional threshold functions [Bun et al., FOCS 2015, Alon et al., STOC 2019]. We explore prediction as an alternative to learning. Instead of putting forward a hypothesis, a predictor answers a stream of classification queries. Earlier work has considered a private prediction model with just a single classification query [Dwork and Feldman, COLT 2018]. We observe that when answering a stream of queries, a predictor must modify the hypothesis it uses over time, and, furthermore, that it must use the queries for this modification, hence introducing potential privacy risks with respect to the queries themselves. We introduce private everlasting prediction taking into account the privacy of both the training set and the (adaptively chosen) queries made to the predictor. We then present a generic construction of private everlasting predictors in the PAC model. The sample complexity of the initial training sample in our construction is quadratic (up to polylog factors) in the VC dimension of the concept class. Our construction allows prediction for all concept classes with finite VC dimension, and in particular threshold functions with constant size initial training sample, even when considered over infinite domains, whereas it is known that the sample complexity of privately learning threshold functions must grow as a function of the domain size and hence is impossible for infinite domains.

A key theme in the past decade has been that when large neural networks and large datasets combine they can produce remarkable results. In deep reinforcement learning (RL), this paradigm is commonly made possible through experience replay, whereby a dataset of past experiences is used to train a policy or value function. However, unlike in supervised or self-supervised learning, an RL agent has to collect its own data, which is often limited. Thus, it is challenging to reap the benefits of deep learning, and even small neural networks can overfit at the start of training. In this work, we leverage the tremendous recent progress in generative modeling and propose Synthetic Experience Replay (SynthER), a diffusion-based approach to flexibly upsample an agent's collected experience. We show that SynthER is an effective method for training RL agents across offline and online settings, in both proprioceptive and pixel-based environments. In offline settings, we observe drastic improvements when upsampling small offline datasets and see that additional synthetic data also allows us to effectively train larger networks. Furthermore, SynthER enables online agents to train with a much higher update-to-data ratio than before, leading to a significant increase in sample efficiency, without any algorithmic changes. We believe that synthetic training data could open the door to realizing the full potential of deep learning for replay-based RL algorithms from limited data. Finally, we open-source our code at //github.com/conglu1997/SynthER.

Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN models, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the user's embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.

This paper proposes a recommender system to alleviate the cold-start problem that can estimate user preferences based on only a small number of items. To identify a user's preference in the cold state, existing recommender systems, such as Netflix, initially provide items to a user; we call those items evidence candidates. Recommendations are then made based on the items selected by the user. Previous recommendation studies have two limitations: (1) the users who consumed a few items have poor recommendations and (2) inadequate evidence candidates are used to identify user preferences. We propose a meta-learning-based recommender system called MeLU to overcome these two limitations. From meta-learning, which can rapidly adopt new task with a few examples, MeLU can estimate new user's preferences with a few consumed items. In addition, we provide an evidence candidate selection strategy that determines distinguishing items for customized preference estimation. We validate MeLU with two benchmark datasets, and the proposed model reduces at least 5.92% mean absolute error than two comparative models on the datasets. We also conduct a user study experiment to verify the evidence selection strategy.

Online news recommender systems aim to address the information explosion of news and make personalized recommendation for users. In general, news language is highly condensed, full of knowledge entities and common sense. However, existing methods are unaware of such external knowledge and cannot fully discover latent knowledge-level connections among news. The recommended results for a user are consequently limited to simple patterns and cannot be extended reasonably. Moreover, news recommendation also faces the challenges of high time-sensitivity of news and dynamic diversity of users' interests. To solve the above problems, in this paper, we propose a deep knowledge-aware network (DKN) that incorporates knowledge graph representation into news recommendation. DKN is a content-based deep recommendation framework for click-through rate prediction. The key component of DKN is a multi-channel and word-entity-aligned knowledge-aware convolutional neural network (KCNN) that fuses semantic-level and knowledge-level representations of news. KCNN treats words and entities as multiple channels, and explicitly keeps their alignment relationship during convolution. In addition, to address users' diverse interests, we also design an attention module in DKN to dynamically aggregate a user's history with respect to current candidate news. Through extensive experiments on a real online news platform, we demonstrate that DKN achieves substantial gains over state-of-the-art deep recommendation models. We also validate the efficacy of the usage of knowledge in DKN.

北京阿比特科技有限公司