A key theme in the past decade has been that when large neural networks and large datasets combine they can produce remarkable results. In deep reinforcement learning (RL), this paradigm is commonly made possible through experience replay, whereby a dataset of past experiences is used to train a policy or value function. However, unlike in supervised or self-supervised learning, an RL agent has to collect its own data, which is often limited. Thus, it is challenging to reap the benefits of deep learning, and even small neural networks can overfit at the start of training. In this work, we leverage the tremendous recent progress in generative modeling and propose Synthetic Experience Replay (SynthER), a diffusion-based approach to flexibly upsample an agent's collected experience. We show that SynthER is an effective method for training RL agents across offline and online settings, in both proprioceptive and pixel-based environments. In offline settings, we observe drastic improvements when upsampling small offline datasets and see that additional synthetic data also allows us to effectively train larger networks. Furthermore, SynthER enables online agents to train with a much higher update-to-data ratio than before, leading to a significant increase in sample efficiency, without any algorithmic changes. We believe that synthetic training data could open the door to realizing the full potential of deep learning for replay-based RL algorithms from limited data. Finally, we open-source our code at //github.com/conglu1997/SynthER.
Reinforcement learning can solve decision-making problems and train an agent to behave in an environment according to a predesigned reward function. However, such an approach becomes very problematic if the reward is too sparse and the agent does not come across the reward during the environmental exploration. The solution to such a problem may be in equipping the agent with an intrinsic motivation, which will provide informed exploration, during which the agent is likely to also encounter external reward. Novelty detection is one of the promising branches of intrinsic motivation research. We present Self-supervised Network Distillation (SND), a class of internal motivation algorithms based on the distillation error as a novelty indicator, where the target model is trained using self-supervised learning. We adapted three existing self-supervised methods for this purpose and experimentally tested them on a set of ten environments that are considered difficult to explore. The results show that our approach achieves faster growth and higher external reward for the same training time compared to the baseline models, which implies improved exploration in a very sparse reward environment.
In recent years, by leveraging more data, computation, and diverse tasks, learned optimizers have achieved remarkable success in supervised learning, outperforming classical hand-designed optimizers. Reinforcement learning (RL) is essentially different from supervised learning and in practice these learned optimizers do not work well even in simple RL tasks. We investigate this phenomenon and identity three issues. First, the gradients of an RL agent vary across a wide range in logarithms while their absolute values are in a small range, making neural networks hard to obtain accurate parameter updates. Second, the agent-gradient distribution is non-independent and identically distributed, leading to inefficient meta-training. Finally, due to highly stochastic agent-environment interactions, the agent-gradients have high bias and variance, which increase the difficulty of learning an optimizer for RL. We propose gradient processing, pipeline training, and a novel optimizer structure with good inductive bias to address these issues. By applying these techniques, for the first time, we show that learning an optimizer for RL from scratch is possible. Although only trained in toy tasks, our learned optimizer can generalize to unseen complex tasks in Brax.
Class-incremental learning aims to learn new classes in an incremental fashion without forgetting the previously learned ones. Several research works have shown how additional data can be used by incremental models to help mitigate catastrophic forgetting. In this work, following the recent breakthrough in text-to-image generative models and their wide distribution, we propose the use of a pretrained Stable Diffusion model as a source of additional data for class-incremental learning. Compared to competitive methods that rely on external, often unlabeled, datasets of real images, our approach can generate synthetic samples belonging to the same classes as the previously encountered images. This allows us to use those additional data samples not only in the distillation loss but also for replay in the classification loss. Experiments on the competitive benchmarks CIFAR100, ImageNet-Subset, and ImageNet demonstrate how this new approach can be used to further improve the performance of state-of-the-art methods for class-incremental learning on large scale datasets.
Goal-conditioned hierarchical reinforcement learning (GCHRL) decomposes long-horizon tasks into sub-tasks through a hierarchical framework and it has demonstrated promising results across a variety of domains. However, the high-level policy's action space is often excessively large, presenting a significant challenge to effective exploration and resulting in potentially inefficient training. Moreover, the dynamic variability of the low-level policy introduces non-stationarity to the high-level state transition function, significantly impeding the learning of the high-level policy. In this paper, we design a measure of prospect for subgoals by planning in the goal space based on the goal-conditioned value function. Building upon the measure of prospect, we propose a landmark-guided exploration strategy by integrating the measures of prospect and novelty which aims to guide the agent to explore efficiently and improve sample efficiency. To address the non-stationarity arising from the dynamic changes of the low-level policy, we apply a state-specific regularization to the learning of low-level policy, which facilitates stable learning of the hierarchical policy. The experimental results demonstrate that our proposed exploration strategy significantly outperforms the baseline methods across multiple tasks.
Online prediction from experts is a fundamental problem in machine learning and several works have studied this problem under privacy constraints. We propose and analyze new algorithms for this problem that improve over the regret bounds of the best existing algorithms for non-adaptive adversaries. For approximate differential privacy, our algorithms achieve regret bounds of $\tilde{O}(\sqrt{T \log d} + \log d/\varepsilon)$ for the stochastic setting and $\tilde{O}(\sqrt{T \log d} + T^{1/3} \log d/\varepsilon)$ for oblivious adversaries (where $d$ is the number of experts). For pure DP, our algorithms are the first to obtain sub-linear regret for oblivious adversaries in the high-dimensional regime $d \ge T$. Moreover, we prove new lower bounds for adaptive adversaries. Our results imply that unlike the non-private setting, there is a strong separation between the optimal regret for adaptive and non-adaptive adversaries for this problem. Our lower bounds also show a separation between pure and approximate differential privacy for adaptive adversaries where the latter is necessary to achieve the non-private $O(\sqrt{T})$ regret.
Coverage path planning is the problem of finding the shortest path that covers the entire free space of a given confined area, with applications ranging from robotic lawn mowing and vacuum cleaning, to demining and search-and-rescue tasks. While offline methods can find provably complete, and in some cases optimal, paths for known environments, their value is limited in online scenarios where the environment is not known beforehand, especially in the presence of non-static obstacles. We propose an end-to-end reinforcement learning-based approach in continuous state and action space, for the online coverage path planning problem that can handle unknown environments. We construct the observation space from both global maps and local sensory inputs, allowing the agent to plan a long-term path, and simultaneously act on short-term obstacle detections. To account for large-scale environments, we propose to use a multi-scale map input representation. Furthermore, we propose a novel total variation reward term for eliminating thin strips of uncovered space in the learned path. To validate the effectiveness of our approach, we perform extensive experiments in simulation with a distance sensor, surpassing the performance of a recent reinforcement learning-based approach.
Learning-based control uses data to design efficient controllers for specific systems. When multiple systems are involved, experience transfer usually focuses on data availability and controller performance yet neglects robustness to variations between systems. In contrast, this letter explores experience transfer from a robustness perspective. We leverage the transfer to design controllers that are robust not only to the uncertainty regarding an individual agent's model but also to the choice of agent in a fleet. Experience transfer enables the design of safe and robust controllers that work out of the box for all systems in a heterogeneous fleet. Our approach combines scenario optimization and recent formulations for direct data-driven control without the need to estimate a model of the system or determine uncertainty bounds for its parameters. We demonstrate the benefits of our data-driven robustification method through a numerical case study and obtain learned controllers that generalize well from a small number of open-loop trajectories in a quadcopter simulation.
Transfer learning in Reinforcement Learning (RL) has been widely studied to overcome training issues of Deep-RL, i.e., exploration cost, data availability and convergence time, by introducing a way to enhance training phase with external knowledge. Generally, knowledge is transferred from expert-agents to novices. While this fixes the issue for a novice agent, a good understanding of the task on expert agent is required for such transfer to be effective. As an alternative, in this paper we propose Expert-Free Online Transfer Learning (EF-OnTL), an algorithm that enables expert-free real-time dynamic transfer learning in multi-agent system. No dedicated expert exists, and transfer source agent and knowledge to be transferred are dynamically selected at each transfer step based on agents' performance and uncertainty. To improve uncertainty estimation, we also propose State Action Reward Next-State Random Network Distillation (sars-RND), an extension of RND that estimates uncertainty from RL agent-environment interaction. We demonstrate EF-OnTL effectiveness against a no-transfer scenario and advice-based baselines, with and without expert agents, in three benchmark tasks: Cart-Pole, a grid-based Multi-Team Predator-Prey (mt-pp) and Half Field Offense (HFO). Our results show that EF-OnTL achieve overall comparable performance when compared against advice-based baselines while not requiring any external input nor threshold tuning. EF-OnTL outperforms no-transfer with an improvement related to the complexity of the task addressed.
Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.
Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.