Given a fixed finite metric space $(V,\mu)$, the {\em minimum $0$-extension problem}, denoted as ${\tt 0\mbox{-}Ext}[\mu]$, is equivalent to the following optimization problem: minimize function of the form $\min\limits_{x\in V^n} \sum_i f_i(x_i) + \sum_{ij}c_{ij}\mu(x_i,x_j)$ where $c_{ij},c_{vi}$ are given nonnegative costs and $f_i:V\rightarrow \mathbb R$ are functions given by $f_i(x_i)=\sum_{v\in V}c_{vi}\mu(x_i,v)$. The computational complexity of ${\tt 0\mbox{-}Ext}[\mu]$ has been recently established by Karzanov and by Hirai: if metric $\mu$ is {\em orientable modular} then ${\tt 0\mbox{-}Ext}[\mu]$ can be solved in polynomial time, otherwise ${\tt 0\mbox{-}Ext}[\mu]$ is NP-hard. To prove the tractability part, Hirai developed a theory of discrete convex functions on orientable modular graphs generalizing several known classes of functions in discrete convex analysis, such as $L^\natural$-convex functions. We consider a more general version of the problem in which unary functions $f_i(x_i)$ can additionally have terms of the form $c_{uv;i}\mu(x_i,\{u,v\})$ for $\{u,v\}\in F$, where set $F\subseteq\binom{V}{2}$ is fixed. We extend the complexity classification above by providing an explicit condition on $(\mu,F)$ for the problem to be tractable. In order to prove the tractability part, we generalize Hirai's theory and define a larger class of discrete convex functions. It covers, in particular, another well-known class of functions, namely submodular functions on an integer lattice. Finally, we improve the complexity of Hirai's algorithm for solving ${\tt 0\mbox{-}Ext}$ on orientable modular graphs.
The concept of Nash equilibrium enlightens the structure of rational behavior in multi-agent settings. However, the concept is as helpful as one may compute it efficiently. We introduce the Cut-and-Play, an algorithm to compute Nash equilibria for non-cooperative simultaneous games where each player's objective is linear in their variables and bilinear in the other players' variables. Using the rich theory of integer programming, we alternate between constructing (i.) increasingly tighter outer approximations of the convex hull of each player's feasible set -- by using branching and cutting plane methods -- and (ii.) increasingly better inner approximations of these hulls -- by finding extreme points and rays of the convex hulls. In particular, we prove the correctness of our algorithm when these convex hulls are polyhedra. Our algorithm allows us to leverage the mixed integer programming technology to compute equilibria for a large class of games. Further, we integrate existing cutting plane families inside the algorithm, significantly speeding up equilibria computation. We showcase a set of extensive computational results for Integer Programming Games and simultaneous games among bilevel leaders. In both cases, our framework outperforms the state-of-the-art in computing time and solution quality.
We study a class of bilevel integer programs with second-order cone constraints at the upper level and a convex quadratic objective and linear constraints at the lower level. We develop disjunctive cuts to separate bilevel infeasible points using a second-order-cone-based cut-generating procedure. To the best of our knowledge, this is the first time disjunctive cuts are studied in the context of discrete bilevel optimization. Using these disjunctive cuts, we establish a branch-and-cut algorithm for the problem class we study, and a cutting plane method for the problem variant with only binary variables. Our computational study demonstrates that both our approaches outperform a state-of-the-art generic solver for mixed-integer bilevel linear programs that is able to solve a linearized version of our test instances, where the non-linearities are linearized in a McCormick fashion.
Given a graph $G$ of degree $k$ over $n$ vertices, we consider the problem of computing a near maximum cut or a near minimum bisection in polynomial time. For graphs of girth $L$, we develop a local message passing algorithm whose complexity is $O(nkL)$, and that achieves near optimal cut values among all $L$-local algorithms. Focusing on max-cut, the algorithm constructs a cut of value $nk/4+ n\mathsf{P}_\star\sqrt{k/4}+\mathsf{err}(n,k,L)$, where $\mathsf{P}_\star\approx 0.763166$ is the value of the Parisi formula from spin glass theory, and $\mathsf{err}(n,k,L)=o_n(n)+no_k(\sqrt{k})+n \sqrt{k} o_L(1)$ (subscripts indicate the asymptotic variables). Our result generalizes to locally treelike graphs, i.e., graphs whose girth becomes $L$ after removing a small fraction of vertices. Earlier work established that, for random $k$-regular graphs, the typical max-cut value is $nk/4+ n\mathsf{P}_\star\sqrt{k/4}+o_n(n)+no_k(\sqrt{k})$. Therefore our algorithm is nearly optimal on such graphs. An immediate corollary of this result is that random regular graphs have nearly minimum max-cut, and nearly maximum min-bisection among all regular locally treelike graphs. This can be viewed as a combinatorial version of the near-Ramanujan property of random regular graphs.
Some properties of generalized convexity for sets and for functions are identified in case of the reliability polynomials of two dual minimal networks. A method of approximating the reliability polynomials of two dual minimal network is developed based on their mutual complementarity properties. The approximating objects are from the class of quadratic spline functions, constructed based both on interpolation conditions and on shape knowledge. It is proved that the approximant objects preserve the shape properties of the exact reliability polynomials. Numerical examples and simulations show the performance of the algorithm, both in terms of low complexity, small error and shape preserving. Possibilities of increasing the accuracy of approximation are discussed.
For a graph class $\mathcal{C}$, the $\mathcal{C}$-Edge-Deletion problem asks for a given graph $G$ to delete the minimum number of edges from $G$ in order to obtain a graph in $\mathcal{C}$. We study the $\mathcal{C}$-Edge-Deletion problem for $\mathcal{C}$ the permutation graphs, interval graphs, and other related graph classes. It follows from Courcelle's Theorem that these problems are fixed parameter tractable when parameterized by treewidth. In this paper, we present concrete FPT algorithms for these problems. By giving explicit algorithms and analyzing these in detail, we obtain algorithms that are significantly faster than the algorithms obtained by using Courcelle's theorem.
Source identification problems have multiple applications in engineering such as the identification of fissures in materials, determination of sources in electromagnetic fields or geophysical applications, detection of contaminant sources, among others. In this work we are concerned with the determination of a time-dependent source in a transport equation from noisy data measured at a fixed position. By means of Fourier techniques can be shown that the problem is ill-posed in the sense that the solution exists but it does not vary continuously with the data. A number of different techniques were developed by other authors to approximate the solution. In this work, we consider a family of parametric regularization operators to deal with the ill-posedness of the problem. We proposed a manner to select the regularization parameter as a function of noise level in data in order to obtain a regularized solution that approximate the unknown source. We find a H\"older type bound for the error of the approximated source when the unknown function is considered to be bounded in a given norm. Numerical examples illustrate the convergence and stability of the method.
For a constant $d$, the $d$-Path Vertex Cover problem ($d$-PVC) is as follows: Given an undirected graph and an integer $k$, find a subset of at most $k$ vertices of the graph, such that their deletion results in a graph not containing a path on $d$ vertices as a subgraph. We develop a framework to automatically generate parameterized branching algorithms for the problem and obtain algorithms outperforming those previously known for $3 \le d \le 8$. E.g., we show that $5$-PVC can be solved in $O(2.7^k\cdot n^{O(1)})$ time.
Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axis-aligned 2D bounding boxes, it can be shown that $IoU$ can be directly used as a regression loss. However, $IoU$ has a plateau making it infeasible to optimize in the case of non-overlapping bounding boxes. In this paper, we address the weaknesses of $IoU$ by introducing a generalized version as both a new loss and a new metric. By incorporating this generalized $IoU$ ($GIoU$) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, $IoU$ based, and new, $GIoU$ based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.