亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we provide practical tools to improve the scientific soundness of firmware corpora beyond the state of the art. We identify binary analysis challenges that significantly impact corpus creation. We use them to derive a framework of key corpus requirements that nurture the scientific goals of replicability and representativeness. We apply the framework to 44 top tier papers and collect 704 data points to show that there is currently no common ground on corpus creation. We discover in otherwise excellent work, that incomplete documentation and inflated corpus sizes blur visions on representativeness and hinder replicability. Our results show that the strict framework provides useful and practical guidelines that can identify miniscule step stones in corpus creation with significant impact on soundness. Finally, we show that it is possible to meet all requirements: We provide a new corpus called LFwC. It is designed for large-scale static analyses on Linux-based firmware and consists of 10,913 high-quality images, covering 2,365 network appliances. We share rich meta data and scripts for replicability with the community. We verify unpacking, perform deduplication, identify contents, and provide bug ground truth. We identify ISAs and Linux kernels. All samples can be unpacked with the open source tool FACT.

相關內容

In this paper, we propose a new set of midpoint-based high-order discretization schemes for computing straight and mixed nonlinear second derivative terms that appear in the compressible Navier-Stokes equations. Firstly, we detail a set of conventional fourth and sixth-order baseline schemes that utilize central midpoint derivatives for the calculation of second derivatives terms. To enhance the spectral properties of the baseline schemes, an optimization procedure is proposed that adjusts the order and truncation error of the midpoint derivative approximation while still constraining the same overall stencil width and scheme order. A new filter penalty term is introduced into the midpoint derivative calculation to help achieve high wavenumber accuracy and high-frequency damping in the mixed derivative discretization. Fourier analysis performed on the both straight and mixed second derivative terms show high spectral efficiency and minimal numerical viscosity with no odd-even decoupling effect. Numerical validation of the resulting optimized schemes is performed through various benchmark test cases assessing their theoretical order of accuracy and solution resolution. The results highlight that the present optimized schemes efficiently utilize the inherent viscosity of the governing equations to achieve improved simulation stability - a feature attributed to their superior spectral resolution in the high wavenumber range. The method is also tested and applied to non-uniform structured meshes in curvilinear coordinates, employing a supersonic impinging jet test case.

In this paper, we focus on distributed estimation and support recovery for high-dimensional linear quantile regression. Quantile regression is a popular alternative tool to the least squares regression for robustness against outliers and data heterogeneity. However, the non-smoothness of the check loss function poses big challenges to both computation and theory in the distributed setting. To tackle these problems, we transform the original quantile regression into the least-squares optimization. By applying a double-smoothing approach, we extend a previous Newton-type distributed approach without the restrictive independent assumption between the error term and covariates. An efficient algorithm is developed, which enjoys high computation and communication efficiency. Theoretically, the proposed distributed estimator achieves a near-oracle convergence rate and high support recovery accuracy after a constant number of iterations. Extensive experiments on synthetic examples and a real data application further demonstrate the effectiveness of the proposed method.

In this paper, we introduce 4DHands, a robust approach to recovering interactive hand meshes and their relative movement from monocular inputs. Our approach addresses two major limitations of previous methods: lacking a unified solution for handling various hand image inputs and neglecting the positional relationship of two hands within images. To overcome these challenges, we develop a transformer-based architecture with novel tokenization and feature fusion strategies. Specifically, we propose a Relation-aware Two-Hand Tokenization (RAT) method to embed positional relation information into the hand tokens. In this way, our network can handle both single-hand and two-hand inputs and explicitly leverage relative hand positions, facilitating the reconstruction of intricate hand interactions in real-world scenarios. As such tokenization indicates the relative relationship of two hands, it also supports more effective feature fusion. To this end, we further develop a Spatio-temporal Interaction Reasoning (SIR) module to fuse hand tokens in 4D with attention and decode them into 3D hand meshes and relative temporal movements. The efficacy of our approach is validated on several benchmark datasets. The results on in-the-wild videos and real-world scenarios demonstrate the superior performances of our approach for interactive hand reconstruction. More video results can be found on the project page: //4dhands.github.io.

In this paper, we propose a novel data augmentation technique called GenMix, which combines generative and mixture approaches to leverage the strengths of both methods. While generative models excel at creating new data patterns, they face challenges such as mode collapse in GANs and difficulties in training diffusion models, especially with limited medical imaging data. On the other hand, mixture models enhance class boundary regions but tend to favor the major class in scenarios with class imbalance. To address these limitations, GenMix integrates both approaches to complement each other. GenMix operates in two stages: (1) training a generative model to produce synthetic images, and (2) performing mixup between synthetic and real data. This process improves the quality and diversity of synthetic data while simultaneously benefiting from the new pattern learning of generative models and the boundary enhancement of mixture models. We validate the effectiveness of our method on the task of classifying focal liver lesions (FLLs) in CT images. Our results demonstrate that GenMix enhances the performance of various generative models, including DCGAN, StyleGAN, Textual Inversion, and Diffusion Models. Notably, the proposed method with Textual Inversion outperforms other methods without fine-tuning diffusion model on the FLL dataset.

There has been considerable recent interest in estimating heterogeneous causal effects. In this paper, we study conditional average partial causal effects (CAPCE) to reveal the heterogeneity of causal effects with continuous treatment. We provide conditions for identifying CAPCE in an instrumental variable setting. Notably, CAPCE is identifiable under a weaker assumption than required by a commonly used measure for estimating heterogeneous causal effects of continuous treatment. We develop three families of CAPCE estimators: sieve, parametric, and reproducing kernel Hilbert space (RKHS)-based, and analyze their statistical properties. We illustrate the proposed CAPCE estimators on synthetic and real-world data.

In this paper, we introduce an improved approach of speculative decoding aimed at enhancing the efficiency of serving large language models. Our method capitalizes on the strengths of two established techniques: the classic two-model speculative decoding approach, and the more recent single-model approach, Medusa. Drawing inspiration from Medusa, our approach adopts a single-model strategy for speculative decoding. However, our method distinguishes itself by employing a single, lightweight draft head with a recurrent dependency design, akin in essence to the small, draft model uses in classic speculative decoding, but without the complexities of the full transformer architecture. And because of the recurrent dependency, we can use beam search to swiftly filter out undesired candidates with the draft head. The outcome is a method that combines the simplicity of single-model design and avoids the need to create a data-dependent tree attention structure only for inference in Medusa. We empirically demonstrate the effectiveness of the proposed method on several popular open source language models, along with a comprehensive analysis of the trade-offs involved in adopting this approach.

In this paper, we focus on single-demonstration imitation learning (IL), a practical approach for real-world applications where acquiring multiple expert demonstrations is costly or infeasible and the ground truth reward function is not available. In contrast to typical IL settings with multiple demonstrations, single-demonstration IL involves an agent having access to only one expert trajectory. We highlight the issue of sparse reward signals in this setting and propose to mitigate this issue through our proposed Transition Discriminator-based IL (TDIL) method. TDIL is an IRL method designed to address reward sparsity by introducing a denser surrogate reward function that considers environmental dynamics. This surrogate reward function encourages the agent to navigate towards states that are proximal to expert states. In practice, TDIL trains a transition discriminator to differentiate between valid and non-valid transitions in a given environment to compute the surrogate rewards. The experiments demonstrate that TDIL outperforms existing IL approaches and achieves expert-level performance in the single-demonstration IL setting across five widely adopted MuJoCo benchmarks as well as the "Adroit Door" robotic environment.

In this paper, we examine 3 important issues in the practical use of state-of-the-art facial landmark detectors and show how a combination of specific architectural modifications can directly improve their accuracy and temporal stability. First, many facial landmark detectors require face normalization as a preprocessing step, which is accomplished by a separately-trained neural network that crops and resizes the face in the input image. There is no guarantee that this pre-trained network performs the optimal face normalization for landmark detection. We instead analyze the use of a spatial transformer network that is trained alongside the landmark detector in an unsupervised manner, and jointly learn optimal face normalization and landmark detection. Second, we show that modifying the output head of the landmark predictor to infer landmarks in a canonical 3D space can further improve accuracy. To convert the predicted 3D landmarks into screen-space, we additionally predict the camera intrinsics and head pose from the input image. As a side benefit, this allows to predict the 3D face shape from a given image only using 2D landmarks as supervision, which is useful in determining landmark visibility among other things. Finally, when training a landmark detector on multiple datasets at the same time, annotation inconsistencies across datasets forces the network to produce a suboptimal average. We propose to add a semantic correction network to address this issue. This additional lightweight neural network is trained alongside the landmark detector, without requiring any additional supervision. While the insights of this paper can be applied to most common landmark detectors, we specifically target a recently-proposed continuous 2D landmark detector to demonstrate how each of our additions leads to meaningful improvements over the state-of-the-art on standard benchmarks.

In this paper, we derive variational formulas for the asymptotic exponents (i.e., convergence rates) of the concentration and isoperimetric functions in the product Polish probability space under certain mild assumptions. These formulas are expressed in terms of relative entropies (which are from information theory) and optimal transport cost functionals (which are from optimal transport theory). Hence, our results verify an intimate connection among information theory, optimal transport, and concentration of measure or isoperimetric inequalities. In the concentration regime, the corresponding variational formula is in fact a dimension-free bound in the sense that this bound is valid for any dimension. A cardinality bound for the alphabet of the auxiliary random variable in the expression of the asymptotic isoperimetric exponent is provided, which makes the expression computable by a finite-dimensional program for the finite alphabet case. We lastly apply our results to obtain an isoperimetric inequality in the classic isoperimetric setting, which is asymptotically sharp under certain conditions. The proofs in this paper are based on information-theoretic and optimal transport techniques.

In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .

北京阿比特科技有限公司