While the test-negative design (TND), which is routinely used for monitoring seasonal flu vaccine effectiveness (VE), has recently become integral to COVID-19 vaccine surveillance, it is susceptible to selection bias due to outcome-dependent sampling. Some studies have addressed the identifiability and estimation of causal parameters under the TND, but efficiency bounds for nonparametric estimators of the target parameter under the unconfoundedness assumption have not yet been investigated. We propose a one-step doubly robust and locally efficient estimator called TNDDR (TND doubly robust), which utilizes sample splitting and can incorporate machine learning techniques to estimate the nuisance functions. We derive the efficient influence function (EIF) for the marginal expectation of the outcome under a vaccination intervention, explore the von Mises expansion, and establish the conditions for $\sqrt{n}-$consistency, asymptotic normality and double robustness of TNDDR. The proposed TNDDR is supported by both theoretical and empirical justifications, and we apply it to estimate COVID-19 VE in an administrative dataset of community-dwelling older people (aged $\geq 60$y) in the province of Qu\'ebec, Canada.
We provide full theoretical guarantees for the convergence behaviour of diffusion-based generative models under the assumption of strongly logconcave data distributions while our approximating class of functions used for score estimation is made of Lipschitz continuous functions. We demonstrate via a motivating example, sampling from a Gaussian distribution with unknown mean, the powerfulness of our approach. In this case, explicit estimates are provided for the associated optimization problem, i.e. score approximation, while these are combined with the corresponding sampling estimates. As a result, we obtain the best known upper bound estimates in terms of key quantities of interest, such as the dimension and rates of convergence, for the Wasserstein-2 distance between the data distribution (Gaussian with unknown mean) and our sampling algorithm. Beyond the motivating example and in order to allow for the use of a diverse range of stochastic optimizers, we present our results using an $L^2$-accurate score estimation assumption, which crucially is formed under an expectation with respect to the stochastic optimizer and our novel auxiliary process that uses only known information. This approach yields the best known convergence rate for our sampling algorithm.
Mediation analysis assesses the extent to which the exposure affects the outcome indirectly through a mediator and the extent to which it operates directly through other pathways. As the most popular method in empirical mediation analysis, the Baron-Kenny approach estimates the indirect and direct effects of the exposure on the outcome based on linear structural equation models. However, when the exposure and the mediator are not randomized, the estimates may be biased due to unmeasured confounding among the exposure, mediator, and outcome. Building on Cinelli and Hazlett (2020), we derive general omitted-variable bias formulas in linear regressions with vector responses and regressors. We then use the formulas to develop a sensitivity analysis method for the Baron-Kenny approach to mediation in the presence of unmeasured confounding. To ensure interpretability, we express the sensitivity parameters to correspond to the natural factorization of the joint distribution of the direct acyclic graph for mediation analysis. They measure the partial correlation between the unmeasured confounder and the exposure, mediator, outcome, respectively. With the sensitivity parameters, we propose a novel measure called the "robustness value for mediation" or simply the "robustness value", to assess the robustness of results based on the Baron-Kenny approach with respect to unmeasured confounding. Intuitively, the robustness value measures the minimum value of the maximum proportion of variability explained by the unmeasured confounding, for the exposure, mediator and outcome, to overturn the results of the point estimate or confidence interval for the direct and indirect effects. Importantly, we prove that all our sensitivity bounds are attainable and thus sharp.
In the current landscape of large models, the Transformer stands as a cornerstone, playing a pivotal role in shaping the trajectory of modern models. However, its application encounters challenges attributed to the substantial computational intricacies intrinsic to its attention mechanism. Moreover, its reliance on high-precision floating-point operations presents specific hurdles, particularly evident in computation-intensive scenarios such as edge computing environments. These environments, characterized by resource-constrained devices and a preference for lower precision, necessitate innovative solutions. To tackle the exacting data processing demands posed by edge devices, we introduce the Bitformer model, an inventive extension of the Transformer paradigm. Central to this innovation is a novel attention mechanism that adeptly replaces conventional floating-point matrix multiplication with bitwise operations. This strategic substitution yields dual advantages. Not only does it maintain the attention mechanism's prowess in capturing intricate long-range information dependencies, but it also orchestrates a profound reduction in the computational complexity inherent in the attention operation. The transition from an $O(n^2d)$ complexity, typical of floating-point operations, to an $O(n^2T)$ complexity characterizing bitwise operations, substantiates this advantage. Notably, in this context, the parameter $T$ remains markedly smaller than the conventional dimensionality parameter $d$. The Bitformer model in essence endeavors to reconcile the indomitable requirements of modern computing landscapes with the constraints posed by edge computing scenarios. By forging this innovative path, we bridge the gap between high-performing models and resource-scarce environments, thus unveiling a promising trajectory for further advancements in the field.
As a surrogate for computationally intensive meso-scale simulation of woven composites, this article presents Recurrent Neural Network (RNN) models. Leveraging the power of transfer learning, the initialization challenges and sparse data issues inherent in cyclic shear strain loads are addressed in the RNN models. A mean-field model generates a comprehensive data set representing elasto-plastic behavior. In simulations, arbitrary six-dimensional strain histories are used to predict stresses under random walking as the source task and cyclic loading conditions as the target task. Incorporating sub-scale properties enhances RNN versatility. In order to achieve accurate predictions, the model uses a grid search method to tune network architecture and hyper-parameter configurations. The results of this study demonstrate that transfer learning can be used to effectively adapt the RNN to varying strain conditions, which establishes its potential as a useful tool for modeling path-dependent responses in woven composites.
Working with multiple variables they usually contain difficult to control complex dependencies. This article proposes extraction of their individual information, e.g. $\overline{X|Y}$ as random variable containing information from $X$, but with removed information about $Y$, by using $(x,y) \leftrightarrow (\bar{x}=\textrm{CDF}_{X|Y=y}(x),y)$ reversible normalization. One application can be decoupling of individual information of variables: reversibly transform $(X_1,\ldots,X_n)\leftrightarrow(\tilde{X}_1,\ldots \tilde{X}_n)$ together containing the same information, but being independent: $\forall_{i\neq j} \tilde{X}_i\perp \tilde{X}_j, \tilde{X}_i\perp X_j$. It requires detailed models of complex conditional probability distributions - it is generally a difficult task, but here can be done through multiple dependency reducing iterations, using imperfect methods (here HCR: Hierarchical Correlation Reconstruction). It could be also used for direct mutual information - evaluating direct information transfer: without use of intermediate variables. For causality direction there is discussed multi-feature Granger causality, e.g. to trace various types of individual information transfers between such decoupled variables, including propagation time (delay).
Navigating the challenges of data-driven speech processing, one of the primary hurdles is accessing reliable pathological speech data. While public datasets appear to offer solutions, they come with inherent risks of potential unintended exposure of patient health information via re-identification attacks. Using a comprehensive real-world pathological speech corpus, with over n=3,800 test subjects spanning various age groups and speech disorders, we employed a deep-learning-driven automatic speaker verification (ASV) approach. This resulted in a notable mean equal error rate (EER) of 0.89% with a standard deviation of 0.06%, outstripping traditional benchmarks. Our comprehensive assessments demonstrate that pathological speech overall faces heightened privacy breach risks compared to healthy speech. Specifically, adults with dysphonia are at heightened re-identification risks, whereas conditions like dysarthria yield results comparable to those of healthy speakers. Crucially, speech intelligibility does not influence the ASV system's performance metrics. In pediatric cases, particularly those with cleft lip and palate, the recording environment plays a decisive role in re-identification. Merging data across pathological types led to a marked EER decrease, suggesting the potential benefits of pathological diversity in ASV, accompanied by a logarithmic boost in ASV effectiveness. In essence, this research sheds light on the dynamics between pathological speech and speaker verification, emphasizing its crucial role in safeguarding patient confidentiality in our increasingly digitized healthcare era.
Much debate has been around the misapplication of metrics in research assessment. As a result of this concern, the Declaration on Research Assessment (DORA) was launched, an initiative that caused opposing viewpoints. However, the discussion topics about DORA have not been formally identified, especially in participatory environments outside the scholarly communication process, such as social networks. This paper contributes to that end by analyzing 20,717 DORA-related tweets published from 2015 to 2022. The results show an increasing volume of tweets, mainly promotional and informative, but with limited participation of users, either commenting or engaging with the tweets, generating a scarcely polarized conversation driven primarily by a few DORA promoters. While a varied list of discussion topics is found (especially "Open science and research assessment," "Academics career assessment & innovation," and "Journal Impact Factor"), the DORA debate appears as part of broader conversations (research evaluation, open science). Further studies are needed to check whether these results are restricted to Twitter or reveal more general patterns. The findings might interest the different evaluators and evaluated agents regarding their interests and concerns around the reforms in the research evaluation.
We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to other robots. In this paper, we propose a method to learn correspondences among two or more robots that may have different morphologies. To be specific, besides robots with similar morphologies with different degrees of freedom, we show that a fixed-based manipulator robot with joint control and a differential drive mobile robot can be addressed within the proposed framework. To set up the correspondence among the robots considered, an initial base task is demonstrated to the robots to achieve the same goal. Then, a common latent representation is learned along with the individual robot policies for achieving the goal. After the initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robots to achieve the same task. We verified our system in a set of experiments where the correspondence between robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.
In recent years, gamification has become very popular for rehabilitating different cognitive and motor problems. It has been shown that rehabilitation is effective when it starts early enough and it is intensive and repetitive. However, the success of rehabilitation depends also on the motivation and perseverance of patients during treatment. Adding serious games to the rehabilitation procedure will help the patients to overcome the monotonicity of the treatment procedure. On the other hand, if a variety of games can be used with a robotic rehabilitation system, it will help to define tasks with different levels of difficulty with greater variety. In this paper we introduce a procedure for connecting a rehabilitation robot to several web-based games. In other words, an interface is designed that connects the robot to a computer through a USB port. To validate the usefulness of the proposed approach, a researcher designed survey was used to get feedback from several users. The results demonstrate that having several games besides rehabilitation makes the procedure of rehabilitation entertaining.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.