Speech enhancement concerns the processes required to remove unwanted background sounds from the target speech to improve its quality and intelligibility. In this paper, a novel approach for single-channel speech enhancement is presented, using colored spectrograms. We propose the use of a deep neural network (DNN) architecture adapted from the pix2pix generative adversarial network (GAN) and train it over colored spectrograms of speech to denoise them. After denoising, the colors of spectrograms are translated to magnitudes of short-time Fourier transform (STFT) using a shallow regression neural network. These estimated STFT magnitudes are later combined with the noisy phases to obtain an enhanced speech. The results show an improvement of almost 0.84 points in the perceptual evaluation of speech quality (PESQ) and 1% in the short-term objective intelligibility (STOI) over the unprocessed noisy data. The gain in quality and intelligibility over the unprocessed signal is almost equal to the gain achieved by the baseline methods used for comparison with the proposed model, but at a much reduced computational cost. The proposed solution offers a comparative PESQ score at almost 10 times reduced computational cost than a similar baseline model that has generated the highest PESQ score trained on grayscaled spectrograms, while it provides only a 1% deficit in STOI at 28 times reduced computational cost when compared to another baseline system based on convolutional neural network-GAN (CNN-GAN) that produces the most intelligible speech.
Sample selection models represent a common methodology for correcting bias induced by data missing not at random. It is well known that these models are not empirically identifiable without exclusion restrictions. In other words, some variables predictive of missingness do not affect the outcome model of interest. The drive to establish this requirement often leads to the inclusion of irrelevant variables in the model. A recent proposal uses adaptive LASSO to circumvent this problem, but its performance depends on the so-called covariance assumption, which can be violated in small to moderate samples. Additionally, there are no tools yet for post-selection inference for this model. To address these challenges, we propose two families of spike-and-slab priors to conduct Bayesian variable selection in sample selection models. These prior structures allow for constructing a Gibbs sampler with tractable conditionals, which is scalable to the dimensions of practical interest. We illustrate the performance of the proposed methodology through a simulation study and present a comparison against adaptive LASSO and stepwise selection. We also provide two applications using publicly available real data. An implementation and code to reproduce the results in this paper can be found at //github.com/adam-iqbal/selection-spike-slab
Despite large-scale diffusion models being highly capable of generating diverse open-world content, they still struggle to match the photorealism and fidelity of concept-specific generators. In this work, we present the task of customizing large-scale diffusion priors for specific concepts as concept-centric personalization. Our goal is to generate high-quality concept-centric images while maintaining the versatile controllability inherent to open-world models, enabling applications in diverse tasks such as concept-centric stylization and image translation. To tackle these challenges, we identify catastrophic forgetting of guidance prediction from diffusion priors as the fundamental issue. Consequently, we develop a guidance-decoupled personalization framework specifically designed to address this task. We propose Generalized Classifier-free Guidance (GCFG) as the foundational theory for our framework. This approach extends Classifier-free Guidance (CFG) to accommodate an arbitrary number of guidances, sourced from a variety of conditions and models. Employing GCFG enables us to separate conditional guidance into two distinct components: concept guidance for fidelity and control guidance for controllability. This division makes it feasible to train a specialized model for concept guidance, while ensuring both control and unconditional guidance remain intact. We then present a null-text Concept-centric Diffusion Model as a concept-specific generator to learn concept guidance without the need for text annotations. Code will be available at //github.com/PRIV-Creation/Concept-centric-Personalization.
The symmetry of complex networks is a global property that has recently gained attention since MacArthur et al. 2008 showed that many real-world networks contain a considerable number of symmetries. These authors work with a very strict symmetry definition based on the network's automorphism. The potential problem with this approach is that even a slight change in the graph's structure can remove or create some symmetry. Recently, Liu 2020 proposed to use an approximate automorphism instead of strict automorphism. This method can discover symmetries in the network while accepting some minor imperfections in their structure. The proposed numerical method, however, exhibits some performance problems and has some limitations while it assumes the absence of fixed points. In this work, we exploit alternative approaches recently developed for treating the Graph Matching Problem and propose a method, which we will refer to as Quadratic Symmetry Approximator (QSA), to address the aforementioned shortcomings. To test our method, we propose a set of random graph models suitable for assessing a wide family of approximate symmetry algorithms. The performance of our method is also demonstrated on brain networks.
We present a modification to RingCT protocol with stealth addresses that makes it compatible with Delegated Proof of Stake based consensus mechanisms called Delegated RingCT. Our scheme has two building blocks: a customised version of an Integrated Signature and Encryption scheme composed of a public key encryption scheme and two signature schemes (a digital signature and a linkable ring signature); and non-interactive zero knowledge proofs. We give a description of the scheme, security proofs and a prototype implementation whose benchmarking is discussed. Although Delegated RingCT doesn't have the same degree of anonymity as other RingCT constructions, we argue that the benefits that the compatibility with DPoS consensus mechanisms brings constitutes a reasonable trade-off for being able to develop an anonymous decentralised cryptocurrency that is faster and more scalable than existing ones.
We design a deterministic particle method for the solution of the spatially homogeneous Landau equation with uncertainty. The deterministic particle approximation is based on the reformulation of the Landau equation as a formal gradient flow on the set of probability measures, whereas the propagation of uncertain quantities is computed by means of a sg representation of each particle. This approach guarantees spectral accuracy in uncertainty space while preserving the fundamental structural properties of the model: the positivity of the solution, the conservation of invariant quantities, and the entropy production. We provide a regularity results for the particle method in the random space. We perform the numerical validation of the particle method in a wealth of test cases.
In the context of sketching for compressive mixture modeling, we revisit existing proofs of the Restricted Isometry Property of sketching operators with respect to certain mixtures models. After examining the shortcomings of existing guarantees, we propose an alternative analysis that circumvents the need to assume importance sampling when drawing random Fourier features to build random sketching operators. Our analysis is based on new deterministic bounds on the restricted isometry constant that depend solely on the set of frequencies used to define the sketching operator; then we leverage these bounds to establish concentration inequalities for random sketching operators that lead to the desired RIP guarantees. Our analysis also opens the door to theoretical guarantees for structured sketching with frequencies associated to fast random linear operators.
When interest lies in the progression of a disease rather than on a single outcome, non-homogeneous multi-state Markov models constitute a natural and powerful modelling approach. Constant monitoring of a phenomenon of interest is often unfeasible, hence leading to an intermittent observation scheme. This setting is challenging and existing models and their implementations do not yet allow for flexible enough specifications that can fully exploit the information contained in the data. To widen significantly the scope of multi-state Markov models, we propose a closed-form expression for the local curvature information of a key quantity, the transition probability matrix. Such development allows one to model any type of multi-state Markov process, where the transition intensities are flexibly specified as functions of additive predictors. Parameter estimation is carried out through a carefully structured, stable penalised likelihood approach. The methodology is exemplified via two case studies that aim at modelling the onset of cardiac allograft vasculopathy, and cognitive decline. To support applicability and reproducibility, all developed tools are implemented in the R package flexmsm.
In this paper we explore the concept of sequential inductive prediction intervals using theory from sequential testing. We furthermore introduce a 3-parameter PAC definition of prediction intervals that allows us via simulation to achieve almost sharp bounds with high probability.
This paper considers the problem of robust iterative Bayesian smoothing in nonlinear state-space models with additive noise using Gaussian approximations. Iterative methods are known to improve smoothed estimates but are not guaranteed to converge, motivating the development of more robust versions of the algorithms. The aim of this article is to present Levenberg-Marquardt (LM) and line-search extensions of the classical iterated extended Kalman smoother (IEKS) as well as the iterated posterior linearisation smoother (IPLS). The IEKS has previously been shown to be equivalent to the Gauss-Newton (GN) method. We derive a similar GN interpretation for the IPLS. Furthermore, we show that an LM extension for both iterative methods can be achieved with a simple modification of the smoothing iterations, enabling algorithms with efficient implementations. Our numerical experiments show the importance of robust methods, in particular for the IEKS-based smoothers. The computationally expensive IPLS-based smoothers are naturally robust but can still benefit from further regularisation.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.