We present polynomial-time SDP-based algorithms for the following problem: For fixed $k \leq \ell$, given a real number $\epsilon>0$ and a graph $G$ that admits a $k$-colouring with a $\rho$-fraction of the edges coloured properly, it returns an $\ell$-colouring of $G$ with an $(\alpha \rho - \epsilon)$-fraction of the edges coloured properly in polynomial time in $G$ and $1 / \epsilon$. Our algorithms are based on the algorithms of Frieze and Jerrum [Algorithmica'97] and of Karger, Motwani and Sudan [JACM'98]. For $k = 2, \ell = 3$, our algorithm achieves an approximation ratio $\alpha = 1$, which is the best possible. When $k$ is fixed and $\ell$ grows large, our algorithm achieves an approximation ratio of $\alpha = 1 - o(1 / \ell)$. When $k, \ell$ are both large, our algorithm achieves an approximation ratio of $\alpha = 1 - 1 / \ell + 2 \ln \ell / k \ell - o(\ln \ell / k \ell) - O(1 / k^2)$; if we fix $d = \ell - k$ and allow $k, \ell$ to grow large, this is $\alpha = 1 - 1 / \ell + 2 \ln \ell / k \ell - o(\ln \ell / k \ell)$. By extending the results of Khot, Kindler, Mossel and O'Donnell [SICOMP'07] to the promise setting, we show that for large $k$ and $\ell$, assuming Khot's Unique Games Conjecture (UGC), it is \NP-hard to achieve an approximation ratio $\alpha$ greater than $1 - 1 / \ell + 2 \ln \ell / k \ell + o(\ln \ell / k \ell)$, provided that $\ell$ is bounded by a function that is $o(\exp(\sqrt[3]{k}))$. For the case where $d = \ell - k$ is fixed, this bound matches the performance of our algorithm up to $o(\ln \ell / k \ell)$. Furthermore, by extending the results of Guruswami and Sinop [ToC'13] to the promise setting, we prove that it is NP-hard to achieve an approximation ratio greater than $1 - 1 / \ell + 8 \ln \ell / k \ell + o(\ln \ell / k \ell)$, provided again that $\ell$ is bounded as before (but this time without assuming the UGC).
A matroid $M$ is an ordered pair $(E,I)$, where $E$ is a finite set called the ground set and a collection $I\subset 2^{E}$ called the independent sets which satisfy the conditions: (I1) $\emptyset \in I$, (I2) $I'\subset I \in I$ implies $I'\in I$, and (I3) $I_1,I_2 \in I$ and $|I_1| < |I_2|$ implies that there is an $e\in I_2$ such that $I_1\cup \{e\} \in I$. The rank $rank(M)$ of a matroid $M$ is the maximum size of an independent set. We say that a matroid $M=(E,I)$ is representable over the reals if there is a map $\varphi : E \rightarrow \mathbb{R}^{rank(M)}$ such that $I\in I$ if and only if $\varphi(I)$ forms a linearly independent set. We study the problem of matroid realizability over the reals. Given a matroid $M$, we ask whether there is a set of points in the Euclidean space representing $M$. We show that matroid realizability is $\exists \mathbb R$-complete, already for matroids of rank 3. The complexity class $\exists \mathbb R$ can be defined as the family of algorithmic problems that is polynomial-time is equivalent to determining if a multivariate polynomial with integers coefficients has a real root. Our methods are similar to previous methods from the literature. Yet, the result itself was never pointed out and there is no proof readily available in the language of computer science.
We describe the classification of orthogonal arrays OA$(2048,14,2,7)$, or, equivalently, completely regular $\{14;2\}$-codes in the $14$-cube ($30848$ equivalence classes). In particular, we find that there is exactly one almost-OA$(2048,14,2,7+1)$, up to equivalence. As derived objects, OA$(1024,13,2,6)$ ($202917$ classes) and completely regular $\{12,2;2,12\}$- and $\{14,12,2;2,12,14\}$-codes in the $13$- and $14$-cubes, respectively, are also classified. Keywords: binary orthogonal array, completely regular code, binary 1-perfect code.
One tuple of probability vectors is more informative than another tuple when there exists a single stochastic matrix transforming the probability vectors of the first tuple into the probability vectors of the other. This is called matrix majorization. Solving an open problem raised by Mu et al, we show that if certain monotones - namely multivariate extensions of R\'{e}nyi divergences - are strictly ordered between the two tuples, then for sufficiently large $n$, there exists a stochastic matrix taking the $n$-fold Kronecker power of each input distribution to the $n$-fold Kronecker power of the corresponding output distribution. The same conditions, with non-strict ordering for the monotones, are also necessary for such matrix majorization in large samples. Our result also gives conditions for the existence of a sequence of statistical maps that asymptotically (with vanishing error) convert a single copy of each input distribution to the corresponding output distribution with the help of a catalyst that is returned unchanged. Allowing for transformation with arbitrarily small error, we find conditions that are both necessary and sufficient for such catalytic matrix majorization. We derive our results by building on a general algebraic theory of preordered semirings recently developed by one of the authors. This also allows us to recover various existing results on majorization in large samples and in the catalytic regime as well as relative majorization in a unified manner.
We study the upward point-set embeddability of digraphs on one-sided convex point sets with at most 1 bend per edge. We provide an algorithm to compute a 1-bend upward point-set embedding of outerplanar $st$-digraphs on arbitrary one-sided convex point sets. We complement this result by proving that for every $n \geq 18$ there exists a $2$-outerplanar $st$-digraph $G$ with $n$ vertices and a one-sided convex point set $S$ so that $G$ does not admit a 1-bend upward point-set embedding on $S$.
We consider the problem of low-rank rectangular matrix completion in the regime where the matrix $M$ of size $n\times m$ is "long", i.e., the aspect ratio $m/n$ diverges to infinity. Such matrices are of particular interest in the study of tensor completion, where they arise from the unfolding of a low-rank tensor. In the case where the sampling probability is $\frac{d}{\sqrt{mn}}$, we propose a new spectral algorithm for recovering the singular values and left singular vectors of the original matrix $M$ based on a variant of the standard non-backtracking operator of a suitably defined bipartite weighted random graph, which we call a non-backtracking wedge operator. When $d$ is above a Kesten-Stigum-type sampling threshold, our algorithm recovers a correlated version of the singular value decomposition of $M$ with quantifiable error bounds. This is the first result in the regime of bounded $d$ for weak recovery and the first for weak consistency when $d\to\infty$ arbitrarily slowly without any polylog factors. As an application, for low-rank orthogonal $k$-tensor completion, we efficiently achieve weak recovery with sample size $O(n^{k/2})$, and weak consistency with sample size $\omega(n^{k/2})$.
The notion of $\alpha$-equivalence between $\lambda$-terms is commonly used to identify terms that are considered equal. However, due to the primitive treatment of free variables, this notion falls short when comparing subterms occurring within a larger context. Depending on the usage of the Barendregt convention (choosing different variable names for all involved binders), it will equate either too few or too many subterms. We introduce a formal notion of context-sensitive $\alpha$-equivalence, where two open terms can be compared within a context that resolves their free variables. We show that this equivalence coincides exactly with the notion of bisimulation equivalence. Furthermore, we present an efficient $O(n\log n)$ runtime algorithm that identifies $\lambda$-terms modulo context-sensitive $\alpha$-equivalence, improving upon a previously established $O(n\log^2 n)$ bound for a hashing modulo ordinary $\alpha$-equivalence by Maziarz et al. Hashing $\lambda$-terms is useful in many applications that require common subterm elimination and structure sharing. We employ the algorithm to obtain a large-scale, densely packed, interconnected graph of mathematical knowledge from the Coq proof assistant for machine learning purposes.
We study least-squares trace regression when the parameter is the sum of a $r$-low-rank matrix and a $s$-sparse matrix and a fraction $\epsilon$ of the labels is corrupted. For subgaussian distributions and feature-dependent noise, we highlight three needed design properties, each one derived from a different process inequality: a "product process inequality", "Chevet's inequality" and a "multiplier process inequality". These properties handle, simultaneously, additive decomposition, label contamination and design-noise interaction. They imply the near-optimality of a tractable estimator with respect to the effective dimensions $d_{eff,r}$ and $d_{eff,s}$ of the low-rank and sparse components, $\epsilon$ and the failure probability $\delta$. The near-optimal rate is $\mathsf{r}(n,d_{eff,r}) + \mathsf{r}(n,d_{eff,s}) + \sqrt{(1+\log(1/\delta))/n} + \epsilon\log(1/\epsilon)$, where $\mathsf{r}(n,d_{eff,r})+\mathsf{r}(n,d_{eff,s})$ is the optimal rate in average with no contamination. Our estimator is adaptive to $(s,r,\epsilon,\delta)$ and, for fixed absolute constant $c>0$, it attains the mentioned rate with probability $1-\delta$ uniformly over all $\delta\ge\exp(-cn)$. Without matrix decomposition, our analysis also entails optimal bounds for a robust estimator adapted to the noise variance. Our estimators are based on "sorted" versions of Huber's loss. We present simulations matching the theory. In particular, it reveals the superiority of "sorted" Huber's losses over the classical Huber's loss.
The mutual-visibility problem in a graph $G$ asks for the cardinality of a largest set of vertices $S\subseteq V(G)$ so that for any two vertices $x,y\in S$ there is a shortest $x,y$-path $P$ so that all internal vertices of $P$ are not in $S$. This is also said as $x,y$ are visible with respect to $S$, or $S$-visible for short. Variations of this problem are known, based on the extension of the visibility property of vertices that are in and/or outside $S$. Such variations are called total, outer and dual mutual-visibility problems. This work is focused on studying the corresponding four visibility parameters in graphs of diameter two, throughout showing bounds and/or closed formulae for these parameters. The mutual-visibility problem in the Cartesian product of two complete graphs is equivalent to (an instance of) the celebrated Zarankievicz's problem. Here we study the dual and outer mutual-visibility problem for the Cartesian product of two complete graphs and all the mutual-visibility problems for the direct product of such graphs as well. We also study all the mutual-visibility problems for the line graphs of complete and complete bipartite graphs. As a consequence of this study, we present several relationships between the mentioned problems and some instances of the classical Tur\'an problem. Moreover, we study the visibility problems for cographs and several non-trivial diameter-two graphs of minimum size.
Despite the fundamental role the Quantum Satisfiability (QSAT) problem has played in quantum complexity theory, a central question remains open: At which local dimension does the complexity of QSAT transition from "easy" to "hard"? Here, we study QSAT with each constraint acting on a $k$-dimensional and $l$-dimensional qudit pair, denoted $(k,l)$-QSAT. Our first main result shows that, surprisingly, QSAT on qubits can remain $\mathsf{QMA}_1$-hard, in that $(2,5)$-QSAT is $\mathsf{QMA}_1$-complete. In contrast, $2$-SAT on qubits is well-known to be poly-time solvable [Bravyi, 2006]. Our second main result proves that $(3,d)$-QSAT on the 1D line with $d\in O(1)$ is also $\mathsf{QMA}_1$-hard. Finally, we initiate the study of 1D $(2,d)$-QSAT by giving a frustration-free 1D Hamiltonian with a unique, entangled ground state. Our first result uses a direct embedding, combining a novel clock construction with the 2D circuit-to-Hamiltonian construction of [Gosset, Nagaj, 2013]. Of note is a new simplified and analytic proof for the latter (as opposed to a partially numeric proof in [GN13]). This exploits Unitary Labelled Graphs [Bausch, Cubitt, Ozols, 2017] together with a new "Nullspace Connection Lemma", allowing us to break low energy analyses into small patches of projectors, and to improve the soundness analysis of [GN13] from $\Omega(1/T^6)$ to $\Omega(1/T^2)$, for $T$ the number of gates. Our second result goes via black-box reduction: Given an arbitrary 1D Hamiltonian $H$ on $d'$-dimensional qudits, we show how to embed it into an effective null-space of a 1D $(3,d)$-QSAT instance, for $d\in O(1)$. Our approach may be viewed as a weaker notion of "simulation" (\`a la [Bravyi, Hastings 2017], [Cubitt, Montanaro, Piddock 2018]). As far as we are aware, this gives the first "black-box simulation"-based $\mathsf{QMA}_1$-hardness result, i.e. for frustration-free Hamiltonians.
Factor Analysis based on multivariate $t$ distribution ($t$fa) is a useful robust tool for extracting common factors on heavy-tailed or contaminated data. However, $t$fa is only applicable to vector data. When $t$fa is applied to matrix data, it is common to first vectorize the matrix observations. This introduces two challenges for $t$fa: (i) the inherent matrix structure of the data is broken, and (ii) robustness may be lost, as vectorized matrix data typically results in a high data dimension, which could easily lead to the breakdown of $t$fa. To address these issues, starting from the intrinsic matrix structure of matrix data, a novel robust factor analysis model, namely bilinear factor analysis built on the matrix-variate $t$ distribution ($t$bfa), is proposed in this paper. The novelty is that it is capable to simultaneously extract common factors for both row and column variables of interest on heavy-tailed or contaminated matrix data. Two efficient algorithms for maximum likelihood estimation of $t$bfa are developed. Closed-form expression for the Fisher information matrix to calculate the accuracy of parameter estimates are derived. Empirical studies are conducted to understand the proposed $t$bfa model and compare with related competitors. The results demonstrate the superiority and practicality of $t$bfa. Importantly, $t$bfa exhibits a significantly higher breakdown point than $t$fa, making it more suitable for matrix data.