In-context learning, which offers substantial advantages over fine-tuning, is predominantly observed in decoder-only models, while encoder-decoder (i.e., seq2seq) models excel in methods that rely on weight updates. Recently, a few studies have demonstrated the feasibility of few-shot learning with seq2seq models; however, this has been limited to tasks that align well with the seq2seq architecture, such as summarization and translation. Inspired by these initial studies, we provide a first-ever extensive experiment comparing the in-context few-shot learning capabilities of decoder-only and encoder-decoder models on a broad range of tasks. Furthermore, we propose two methods to more effectively elicit in-context learning ability in seq2seq models: objective-aligned prompting and a fusion-based approach. Remarkably, our approach outperforms a decoder-only model that is six times larger and exhibits significant performance improvements compared to conventional seq2seq models across a variety of settings. We posit that, with the right configuration and prompt design, seq2seq models can be highly effective few-shot learners for a wide spectrum of applications.
The machine learning modeling process conventionally culminates in selecting a single model that maximizes a selected performance metric. However, this approach leads to abandoning a more profound analysis of slightly inferior models. Particularly in medical and healthcare studies, where the objective extends beyond predictions to valuable insight generation, relying solely on a single model can result in misleading or incomplete conclusions. This problem is particularly pertinent when dealing with a set of models known as $\textit{Rashomon set}$, with performance close to maximum one. Such a set can be numerous and may contain models describing the data in a different way, which calls for comprehensive analysis. This paper introduces a novel process to explore models in the Rashomon set, extending the conventional modeling approach. We propose the $\texttt{Rashomon_DETECT}$ algorithm to detect models with different behavior. It is based on recent developments in the eXplainable Artificial Intelligence (XAI) field. To quantify differences in variable effects among models, we introduce the Profile Disparity Index (PDI) based on measures from functional data analysis. To illustrate the effectiveness of our approach, we showcase its application in predicting survival among hemophagocytic lymphohistiocytosis (HLH) patients - a foundational case study. Additionally, we benchmark our approach on other medical data sets, demonstrating its versatility and utility in various contexts. If differently behaving models are detected in the Rashomon set, their combined analysis leads to more trustworthy conclusions, which is of vital importance for high-stakes applications such as medical applications.
Split learning (SL) is a new collaborative learning technique that allows participants, e.g. a client and a server, to train machine learning models without the client sharing raw data. In this setting, the client initially applies its part of the machine learning model on the raw data to generate Activation Maps (AMs) and then sends them to the server to continue the training process. Previous works in the field demonstrated that reconstructing AMs could result in privacy leakage of client data. In addition to that, existing mitigation techniques that overcome the privacy leakage of SL prove to be significantly worse in terms of accuracy. In this paper, we improve upon previous works by constructing a protocol based on U-shaped SL that can operate on homomorphically encrypted data. More precisely, in our approach, the client applies homomorphic encryption on the AMs before sending them to the server, thus protecting user privacy. This is an important improvement that reduces privacy leakage in comparison to other SL-based works. Finally, our results show that, with the optimum set of parameters, training with HE data in the U-shaped SL setting only reduces accuracy by 2.65% compared to training on plaintext. In addition, raw training data privacy is preserved.
Identifiability of discrete statistical models with latent variables is known to be challenging to study, yet crucial to a model's interpretability and reliability. This work presents a general algebraic technique to investigate identifiability of complicated discrete models with latent and graphical components. Specifically, motivated by diagnostic tests collecting multivariate categorical data, we focus on discrete models with multiple binary latent variables. In the considered model, the latent variables can have arbitrary dependencies among themselves while the latent-to-observed measurement graph takes a "star-forest" shape. We establish necessary and sufficient graphical criteria for identifiability, and reveal an interesting and perhaps surprising phenomenon of blessing-of-dependence geometry: under the minimal conditions for generic identifiability, the parameters are identifiable if and only if the latent variables are not statistically independent. Thanks to this theory, we can perform formal hypothesis tests of identifiability in the boundary case by testing certain marginal independence of the observed variables. Our results give new understanding of statistical properties of graphical models with latent variables. They also entail useful implications for designing diagnostic tests or surveys that measure binary latent traits.
As large language models (LLM) evolve in their capabilities, various recent studies have tried to quantify their behavior using psychological tools created to study human behavior. One such example is the measurement of "personality" of LLMs using personality self-assessment tests. In this paper, we take three such studies on personality measurement of LLMs that use personality self-assessment tests created to study human behavior. We use the prompts used in these three different papers to measure the personality of the same LLM. We find that all three prompts lead very different personality scores. This simple test reveals that personality self-assessment scores in LLMs depend on the subjective choice of the prompter. Since we don't know the ground truth value of personality scores for LLMs as there is no correct answer to such questions, there's no way of claiming if one prompt is more or less correct than the other. We then introduce the property of option order symmetry for personality measurement of LLMs. Since most of the self-assessment tests exist in the form of multiple choice question (MCQ) questions, we argue that the scores should also be robust to not just the prompt template but also the order in which the options are presented. This test unsurprisingly reveals that the answers to the self-assessment tests are not robust to the order of the options. These simple tests, done on ChatGPT and Llama2 models show that self-assessment personality tests created for humans are not appropriate for measuring personality in LLMs.
Deep learning models have witnessed depth and pose estimation framework on unannotated datasets as a effective pathway to succeed in endoscopic navigation. Most current techniques are dedicated to developing more advanced neural networks to improve the accuracy. However, existing methods ignore the special properties of endoscopic images, resulting in an inability to fully unleash the power of neural networks. In this study, we conduct a detail analysis of the properties of endoscopic images and improve the compatibility of images and neural networks, to unleash the power of current neural networks. First, we introcude the Mask Image Modelling (MIM) module, which inputs partial image information instead of complete image information, allowing the network to recover global information from partial pixel information. This enhances the network' s ability to perceive global information and alleviates the phenomenon of local overfitting in convolutional neural networks due to local artifacts. Second, we propose a lightweight neural network to enhance the endoscopic images, to explicitly improve the compatibility between images and neural networks. Extensive experiments are conducted on the three public datasets and one inhouse dataset, and the proposed modules improve baselines by a large margin. Furthermore, the enhanced images we proposed, which have higher network compatibility, can serve as an effective data augmentation method and they are able to extract more stable feature points in traditional feature point matching tasks and achieve outstanding performance.
Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.