亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Kalai's $3^d$ conjecture states that every centrally-symmetric $d$-polytope has at least $3^d$ faces. We give short proofs for two special cases: if $P$ is unconditional (that is, invariant w.r.t. reflection in any coordinate hyperplane), and more generally, if $P$ is locally anti-blocking. In both cases we show that the minimum is attained exactly for the Hanner polytopes.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際會議。 Publisher:ACM。 SIT:

The importance of symmetries has recently been recognized in quantum machine learning from the simple motto: if a task exhibits a symmetry (given by a group $\mathfrak{G}$), the learning model should respect said symmetry. This can be instantiated via $\mathfrak{G}$-equivariant Quantum Neural Networks (QNNs), i.e., parametrized quantum circuits whose gates are generated by operators commuting with a given representation of $\mathfrak{G}$. In practice, however, there might be additional restrictions to the types of gates one can use, such as being able to act on at most $k$ qubits. In this work we study how the interplay between symmetry and $k$-bodyness in the QNN generators affect its expressiveness for the special case of $\mathfrak{G}=S_n$, the symmetric group. Our results show that if the QNN is generated by one- and two-body $S_n$-equivariant gates, the QNN is semi-universal but not universal. That is, the QNN can generate any arbitrary special unitary matrix in the invariant subspaces, but has no control over the relative phases between them. Then, we show that in order to reach universality one needs to include $n$-body generators (if $n$ is even) or $(n-1)$-body generators (if $n$ is odd). As such, our results brings us a step closer to better understanding the capabilities and limitations of equivariant QNNs.

The problems of optimal recovering univariate functions and their derivatives are studied. To solve these problems, two variants of the truncation method are constructed, which are order-optimal both in the sense of accuracy and in terms of the amount of involved Galerkin information. For numerical summation, it has been established how the parameters characterizing the problem being solved affect its stability.

Numerically solving multi-marginal optimal transport (MMOT) problems is computationally prohibitive, even for moderate-scale instances involving $l\ge4$ marginals with support sizes of $N\ge1000$. The cost in MMOT is represented as a tensor with $N^l$ elements. Even accessing each element once incurs a significant computational burden. In fact, many algorithms require direct computation of tensor-vector products, leading to a computational complexity of $O(N^l)$ or beyond. In this paper, inspired by our previous work [$Comm. \ Math. \ Sci.$, 20 (2022), pp. 2053 - 2057], we observe that the costly tensor-vector products in the Sinkhorn Algorithm can be computed with a recursive process by separating summations and dynamic programming. Based on this idea, we propose a fast tensor-vector product algorithm to solve the MMOT problem with $L^1$ cost, achieving a miraculous reduction in the computational cost of the entropy regularized solution to $O(N)$. Numerical experiment results confirm such high performance of this novel method which can be several orders of magnitude faster than the original Sinkhorn algorithm.

We present a new method for constructing valid covariance functions of Gaussian processes for spatial analysis in irregular, non-convex domains such as bodies of water. Standard covariance functions based on geodesic distances are not guaranteed to be positive definite on such domains, while existing non-Euclidean approaches fail to respect the partially Euclidean nature of these domains where the geodesic distance agrees with the Euclidean distances for some pairs of points. Using a visibility graph on the domain, we propose a class of covariance functions that preserve Euclidean-based covariances between points that are connected in the domain while incorporating the non-convex geometry of the domain via conditional independence relationships. We show that the proposed method preserves the partially Euclidean nature of the intrinsic geometry on the domain while maintaining validity (positive definiteness) and marginal stationarity of the covariance function over the entire parameter space, properties which are not always fulfilled by existing approaches to construct covariance functions on non-convex domains. We provide useful approximations to improve computational efficiency, resulting in a scalable algorithm. We compare the performance of our method with those of competing state-of-the-art methods using simulation studies on synthetic non-convex domains. The method is applied to data regarding acidity levels in the Chesapeake Bay, showing its potential for ecological monitoring in real-world spatial applications on irregular domains.

This study explores reduced-order modeling for analyzing the time-dependent diffusion-deformation of hydrogels. The full-order model describing hydrogel transient behavior consists of a coupled system of partial differential equations in which chemical potential and displacements are coupled. This system is formulated in a monolithic fashion and solved using the finite element method. We employ proper orthogonal decomposition as a model order reduction approach. The reduced-order model performance is tested through a benchmark problem on hydrogel swelling and a case study simulating co-axial printing. Then, we embed the reduced-order model into an optimization loop to efficiently identify the coupled problem's material parameters using full-field data. Finally, a study is conducted on the uncertainty propagation of the material parameter.

The problem of binary hypothesis testing between two probability measures is considered. New sharp bounds are derived for the best achievable error probability of such tests based on independent and identically distributed observations. Specifically, the asymmetric version of the problem is examined, where different requirements are placed on the two error probabilities. Accurate nonasymptotic expansions with explicit constants are obtained for the error probability, using tools from large deviations and Gaussian approximation. Examples are shown indicating that, in the asymmetric regime, the approximations suggested by the new bounds are significantly more accurate than the approximations provided by either of the two main earlier approaches -- normal approximation and error exponents.

In many statistical modeling problems, such as classification and regression, it is common to encounter sparse and blocky coefficients. Sparse fused Lasso is specifically designed to recover these sparse and blocky structured features, especially in cases where the design matrix has ultrahigh dimensions, meaning that the number of features significantly surpasses the number of samples. Quantile loss is a well-known robust loss function that is widely used in statistical modeling. In this paper, we propose a new sparse fused lasso classification model, and develop a unified multi-block linearized alternating direction method of multipliers algorithm that effectively selects sparse and blocky features for regression and classification. Our algorithm has been proven to converge with a derived linear convergence rate. Additionally, our algorithm has a significant advantage over existing methods for solving ultrahigh dimensional sparse fused Lasso regression and classification models due to its lower time complexity. Note that the algorithm can be easily extended to solve various existing fused Lasso models. Finally, we present numerical results for several synthetic and real-world examples, which demonstrate the robustness, scalability, and accuracy of the proposed classification model and algorithm

In the analysis of spatially resolved transcriptomics data, detecting spatially variable genes (SVGs) is crucial. Numerous computational methods exist, but varying SVG definitions and methodologies lead to incomparable results. We review 31 state-of-the-art methods, categorizing SVGs into three types: overall, cell-type-specific, and spatial-domain-marker SVGs. Our review explains the intuitions underlying these methods, summarizes their applications, and categorizes the hypothesis tests they use in the trade-off between generality and specificity for SVG detection. We discuss challenges in SVG detection and propose future directions for improvement. Our review offers insights for method developers and users, advocating for category-specific benchmarking.

Due to their rich algebraic structure, cyclic codes have a great deal of significance amongst linear codes. Duadic codes are the generalization of the quadratic residue codes, a special case of cyclic codes. The $m$-adic residue codes are the generalization of the duadic codes. The aim of this paper is to study the structure of the $m$-adic residue codes over the quotient ring $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$. We determine the idempotent generators of the $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$. We obtain some parameters of optimal $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$ with respect to Griesmer bound for rings. Furthermore, we derive a condition for $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$ to contain their dual. By making use of a preserving-orthogonality Gray map, we construct a family of quantum error correcting codes from the Gray images of dual-containing $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$ and give some examples to illustrate our findings.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

北京阿比特科技有限公司