In this paper, I formalize intelligence measurement in games by introducing mechanisms that assign a real number -- interpreted as an intelligence score -- to each player in a game. This score quantifies the ex-post strategic ability of the players based on empirically observable information, such as the actions of the players, the game's outcome, strength of the players, and a reference oracle machine such as a chess-playing artificial intelligence system. Specifically, I introduce two main concepts: first, the Game Intelligence (GI) mechanism, which quantifies a player's intelligence in a game by considering not only the game's outcome but also the "mistakes" made during the game according to the reference machine's intelligence. Second, I define gamingproofness, a practical and computational concept of strategyproofness. To illustrate the GI mechanism, I apply it to an extensive dataset comprising over a billion chess moves, including over a million moves made by top 20 grandmasters in history. Notably, Magnus Carlsen emerges with the highest GI score among all world championship games included in the dataset. In machine-vs-machine games, the well-known chess engine Stockfish comes out on top.
3D Gaussian splatting, a novel differentiable rendering technique, has achieved state-of-the-art novel view synthesis results with high rendering speeds and relatively low training times. However, its performance on scenes commonly seen in indoor datasets is poor due to the lack of geometric constraints during optimization. We extend 3D Gaussian splatting with depth and normal cues to tackle challenging indoor datasets and showcase techniques for efficient mesh extraction, an important downstream application. Specifically, we regularize the optimization procedure with depth information, enforce local smoothness of nearby Gaussians, and use the geometry of the 3D Gaussians supervised by normal cues to achieve better alignment with the true scene geometry. We improve depth estimation and novel view synthesis results over baselines and show how this simple yet effective regularization technique can be used to directly extract meshes from the Gaussian representation yielding more physically accurate reconstructions on indoor scenes. Our code will be released in //github.com/maturk/dn-splatter.
The abundance of data has transformed the world in every aspect. It has become the core element in decision making, problem solving, and innovation in almost all areas of life, including business, science, healthcare, education, and many others. Despite all these advances, privacy and security remain critical concerns of the healthcare industry. It is important to note that healthcare data can also be a liability if it is not managed correctly. This data mismanagement can have severe consequences for patients and healthcare organisations, including patient safety, legal liability, damage to reputation, financial loss, and operational inefficiency. Healthcare organisations must comply with a range of regulations to protect patient data. We perform a classification of data governance elements or components in a manner that thoroughly assesses the healthcare data chain from a privacy and security standpoint. After deeply analysing the existing literature, we propose a conceptual privacy and security driven healthcare data governance framework.
We introduce VoiceCraft, a token infilling neural codec language model, that achieves state-of-the-art performance on both speech editing and zero-shot text-to-speech (TTS) on audiobooks, internet videos, and podcasts. VoiceCraft employs a Transformer decoder architecture and introduces a token rearrangement procedure that combines causal masking and delayed stacking to enable generation within an existing sequence. On speech editing tasks, VoiceCraft produces edited speech that is nearly indistinguishable from unedited recordings in terms of naturalness, as evaluated by humans; for zero-shot TTS, our model outperforms prior SotA models including VALLE and the popular commercial model XTTS-v2. Crucially, the models are evaluated on challenging and realistic datasets, that consist of diverse accents, speaking styles, recording conditions, and background noise and music, and our model performs consistently well compared to other models and real recordings. In particular, for speech editing evaluation, we introduce a high quality, challenging, and realistic dataset named RealEdit. We encourage readers to listen to the demos at //jasonppy.github.io/VoiceCraft_web.
The adoption of Artificial Intelligence in Education (AIED) holds the promise of revolutionizing educational practices by offering personalized learning experiences, automating administrative and pedagogical tasks, and reducing the cost of content creation. However, the lack of standardized practices in the development and deployment of AIED solutions has led to fragmented ecosystems, which presents challenges in interoperability, scalability, and ethical governance. This article aims to address the critical need to develop and implement industry standards in AIED, offering a comprehensive analysis of the current landscape, challenges, and strategic approaches to overcome these obstacles. We begin by examining the various applications of AIED in various educational settings and identify key areas lacking in standardization, including system interoperability, ontology mapping, data integration, evaluation, and ethical governance. Then, we propose a multi-tiered framework for establishing robust industry standards for AIED. In addition, we discuss methodologies for the iterative development and deployment of standards, incorporating feedback loops from real-world applications to refine and adapt standards over time. The paper also highlights the role of emerging technologies and pedagogical theories in shaping future standards for AIED. Finally, we outline a strategic roadmap for stakeholders to implement these standards, fostering a cohesive and ethical AIED ecosystem. By establishing comprehensive industry standards, such as those by IEEE Artificial Intelligence Standards Committee (AISC) and International Organization for Standardization (ISO), we can accelerate and scale AIED solutions to improve educational outcomes, ensuring that technological advances align with the principles of inclusivity, fairness, and educational excellence.
For a long time, in reconstructing 3D human bodies from monocular images, most methods opted to simplify the task by minimizing the influence of the camera. Using a coarse focal length setting results in the reconstructed bodies not aligning well with distorted images. Ignoring camera rotation leads to an unrealistic reconstructed body pose in world space. Consequently, the application scenarios of existing methods are confined to controlled environments. When confronted with complex and diverse in-the-wild images, they struggle to achieve accurate and reasonable reconstruction in world space. To address the above issues, we propose W-HMR, which decouples global body recovery into camera calibration, local body recovery, and global body orientation correction. We design the first weak-supervised camera calibration method for body distortion, eliminating dependence on focal length labels and achieving finer mesh-image alignment. We propose a novel orientation correction module to allow the reconstructed human body to remain normal in world space. Decoupling body orientation and body pose enables our model to consider the accuracy in camera coordinate and the reasonableness in world coordinate simultaneously, expanding the range of applications. As a result, W-HMR achieves high-quality reconstruction in dual coordinate systems, particularly in challenging scenes. Codes and demos have been released on the project page //yw0208.github.io/w-hmr/.
Recent research proposed gaze-assisted gestures to enhance interaction within virtual reality (VR), providing opportunities for people with motor impairments to experience VR. Compared to people with other motor impairments, those with Spinal Muscular Atrophy (SMA) exhibit enhanced distal limb mobility, providing them with more design space. However, it remains unknown what gaze-assisted upper-body gestures people with SMA would want and be able to perform. We conducted an elicitation study in which 12 VR-experienced people with SMA designed upper-body gestures for 26 VR commands, and collected 312 user-defined gestures. Participants predominantly favored creating gestures with their hands. The type of tasks and participants' abilities influence their choice of body parts for gesture design. Participants tended to enhance their body involvement and preferred gestures that required minimal physical effort, and were aesthetically pleasing. Our research will contribute to creating better gesture-based input methods for people with motor impairments to interact with VR.
Multi-agent learning algorithms have been shown to display complex, unstable behaviours in a wide array of games. In fact, previous works indicate that convergent behaviours are less likely to occur as the total number of agents increases. This seemingly prohibits convergence to stable strategies, such as Nash Equilibria, in games with many players. To make progress towards addressing this challenge we study the Q-Learning Dynamics, a classical model for exploration and exploitation in multi-agent learning. In particular, we study the behaviour of Q-Learning on games where interactions between agents are constrained by a network. We determine a number of sufficient conditions, depending on the game and network structure, which guarantee that agent strategies converge to a unique stable strategy, called the Quantal Response Equilibrium (QRE). Crucially, these sufficient conditions are independent of the total number of agents, allowing for provable convergence in arbitrarily large games. Next, we compare the learned QRE to the underlying NE of the game, by showing that any QRE is an $\epsilon$-approximate Nash Equilibrium. We first provide tight bounds on $\epsilon$ and show how these bounds lead naturally to a centralised scheme for choosing exploration rates, which enables independent learners to learn stable approximate Nash Equilibrium strategies. We validate the method through experiments and demonstrate its effectiveness even in the presence of numerous agents and actions. Through these results, we show that independent learning dynamics may converge to approximate Nash Equilibria, even in the presence of many agents.
Solving Nash equilibrium is the key challenge in normal-form games with large strategy spaces, where open-ended learning frameworks offer an efficient approach. In this work, we propose an innovative unified open-ended learning framework A-PSRO, i.e., Advantage Policy Space Response Oracle, as a comprehensive framework for both zero-sum and general-sum games. In particular, we introduce the advantage function as an enhanced evaluation metric for strategies, enabling a unified learning objective for agents engaged in normal-form games. We prove that the advantage function exhibits favorable properties and is connected with the Nash equilibrium, which can be used as an objective to guide agents to learn strategies efficiently. Our experiments reveal that A-PSRO achieves a considerable decrease in exploitability in zero-sum games and an escalation in rewards in general-sum games, significantly outperforming previous PSRO algorithms.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.