亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates the temporal patterns of activity in the cryptocurrency market with a focus on bitcoin, ether, dogecoin, and winklink from January 2020 to December 2022. Market activity measures - logarithmic returns, volume, and transaction number, sampled every 10 seconds, were divided into intraday and intraweek periods and then further decomposed into recurring and noise components via correlation matrix formalism. The key findings include the distinctive market behavior from traditional stock markets due to the nonexistence of trade opening and closing. This was manifest in three enhanced-activity phases aligning with Asian, European, and US trading sessions. An intriguing pattern of activity surge in 15-minute intervals, particularly at full hours, was also noticed, implying the potential role of algorithmic trading. Most notably, recurring bursts of activity in bitcoin and ether were identified to coincide with the release times of significant US macroeconomic reports such as Nonfarm payrolls, Consumer Price Index data, and Federal Reserve statements. The most correlated daily patterns of activity occurred in 2022, possibly reflecting the documented correlations with US stock indices in the same period. Factors that are external to the inner market dynamics are found to be responsible for the repeatable components of the market dynamics, while the internal factors appear to be substantially random, which manifests itself in a good agreement between the empirical eigenvalue distributions in their bulk and the random matrix theory predictions expressed by the Marchenko-Pastur distribution. The findings reported support the growing integration of cryptocurrencies into the global financial markets.

相關內容

Purpose: To develop an open-source, fully-automatic deep learning algorithm, DeepGPET, for choroid region segmentation in optical coherence tomography (OCT) data. Methods: We used a dataset of 715 OCT B-scans (82 subjects, 115 eyes) from 3 clinical studies related to systemic disease. Ground truth segmentations were generated using a clinically validated, semi-automatic choroid segmentation method, Gaussian Process Edge Tracing (GPET). We finetuned a UNet with MobileNetV3 backbone pre-trained on ImageNet. Standard segmentation agreement metrics, as well as derived measures of choroidal thickness and area, were used to evaluate DeepGPET, alongside qualitative evaluation from a clinical ophthalmologist. Results: DeepGPET achieves excellent agreement with GPET on data from 3 clinical studies (AUC=0.9994, Dice=0.9664; Pearson correlation of 0.8908 for choroidal thickness and 0.9082 for choroidal area), while reducing the mean processing time per image on a standard laptop CPU from 34.49s ($\pm$15.09) using GPET to 1.25s ($\pm$0.10) using DeepGPET. Both methods performed similarly according to a clinical ophthalmologist, who qualitatively judged a subset of segmentations by GPET and DeepGPET, based on smoothness and accuracy of segmentations. Conclusions :DeepGPET, a fully-automatic, open-source algorithm for choroidal segmentation, will enable researchers to efficiently extract choroidal measurements, even for large datasets. As no manual interventions are required, DeepGPET is less subjective than semi-automatic methods and could be deployed in clinical practice without necessitating a trained operator. DeepGPET addresses the lack of open-source, fully-automatic and clinically relevant choroid segmentation algorithms, and its subsequent public release will facilitate future choroidal research both in ophthalmology and wider systemic health.

The joint retrieval of surface reflectances and atmospheric parameters in VSWIR imaging spectroscopy is a computationally challenging high-dimensional problem. Using NASA's Surface Biology and Geology mission as the motivational context, the uncertainty associated with the retrievals is crucial for further application of the retrieved results for environmental applications. Although Markov chain Monte Carlo (MCMC) is a Bayesian method ideal for uncertainty quantification, the full-dimensional implementation of MCMC for the retrieval is computationally intractable. In this work, we developed a block Metropolis MCMC algorithm for the high-dimensional VSWIR surface reflectance retrieval that leverages the structure of the forward radiative transfer model to enable tractable fully Bayesian computation. We use the posterior distribution from this MCMC algorithm to assess the limitations of optimal estimation, the state-of-the-art Bayesian algorithm in operational retrievals which is more computationally efficient but uses a Gaussian approximation to characterize the posterior. Analyzing the differences in the posterior computed by each method, the MCMC algorithm was shown to give more physically sensible results and reveals the non-Gaussian structure of the posterior, specifically in the atmospheric aerosol optical depth parameter and the low-wavelength surface reflectances.

We review how to simulate continuous determinantal point processes (DPPs) and improve the current simulation algorithms in several important special cases as well as detail how certain types of conditional simulation can be carried out. Importantly we show how to speed up the simulation of the widely used Fourier based projection DPPs, which arise as approximations of more general DPPs. The algorithms are implemented and published as open source software.

This paper examines the effectiveness of several forecasting methods for predicting inflation, focusing on aggregating disaggregated forecasts - also known in the literature as the bottom-up approach. Taking the Brazilian case as an application, we consider different disaggregation levels for inflation and employ a range of traditional time series techniques as well as linear and nonlinear machine learning (ML) models to deal with a larger number of predictors. For many forecast horizons, the aggregation of disaggregated forecasts performs just as well survey-based expectations and models that generate forecasts using the aggregate directly. Overall, ML methods outperform traditional time series models in predictive accuracy, with outstanding performance in forecasting disaggregates. Our results reinforce the benefits of using models in a data-rich environment for inflation forecasting, including aggregating disaggregated forecasts from ML techniques, mainly during volatile periods. Starting from the COVID-19 pandemic, the random forest model based on both aggregate and disaggregated inflation achieves remarkable predictive performance at intermediate and longer horizons.

We combine Kronecker products, and quantitative information flow, to give a novel formal analysis for the fine-grained verification of utility in complex privacy pipelines. The combination explains a surprising anomaly in the behaviour of utility of privacy-preserving pipelines -- that sometimes a reduction in privacy results also in a decrease in utility. We use the standard measure of utility for Bayesian analysis, introduced by Ghosh at al., to produce tractable and rigorous proofs of the fine-grained statistical behaviour leading to the anomaly. More generally, we offer the prospect of formal-analysis tools for utility that complement extant formal analyses of privacy. We demonstrate our results on a number of common privacy-preserving designs.

This paper investigates the temporal patterns of activity in the cryptocurrency market with a focus on Bitcoin, Ethereum, Dogecoin, and WINkLink from January 2020 to December 2022. Market activity measures - logarithmic returns, volume, and transaction number, sampled every 10 seconds, were divided into intraday and intraweek periods and then further decomposed into recurring and noise components via correlation matrix formalism. The key findings include the distinctive market behavior from traditional stock markets due to the nonexistence of trade opening and closing. This was manifest in three enhanced-activity phases aligning with Asian, European, and U.S. trading sessions. An intriguing pattern of activity surge in 15-minute intervals, particularly at full hours, was also noticed, implying the potential role of algorithmic trading. Most notably, recurring bursts of activity in bitcoin and ether were identified to coincide with the release times of significant U.S. macroeconomic reports such as Nonfarm payrolls, Consumer Price Index data, and Federal Reserve statements. The most correlated daily patterns of activity occurred in 2022, possibly reflecting the documented correlations with U.S. stock indices in the same period. Factors that are external to the inner market dynamics are found to be responsible for the repeatable components of the market dynamics, while the internal factors appear to be substantially random, which manifests itself in a good agreement between the empirical eigenvalue distributions in their bulk and the random matrix theory predictions expressed by the Marchenko-Pastur distribution. The findings reported support the growing integration of cryptocurrencies into the global financial markets.

The forecasting and computation of the stability of chaotic systems from partial observations are tasks for which traditional equation-based methods may not be suitable. In this computational paper, we propose data-driven methods to (i) infer the dynamics of unobserved (hidden) chaotic variables (full-state reconstruction); (ii) time forecast the evolution of the full state; and (iii) infer the stability properties of the full state. The tasks are performed with long short-term memory (LSTM) networks, which are trained with observations (data) limited to only part of the state: (i) the low-to-high resolution LSTM (LH-LSTM), which takes partial observations as training input, and requires access to the full system state when computing the loss; and (ii) the physics-informed LSTM (PI-LSTM), which is designed to combine partial observations with the integral formulation of the dynamical system's evolution equations. First, we derive the Jacobian of the LSTMs. Second, we analyse a chaotic partial differential equation, the Kuramoto-Sivashinsky (KS), and the Lorenz-96 system. We show that the proposed networks can forecast the hidden variables, both time-accurately and statistically. The Lyapunov exponents and covariant Lyapunov vectors, which characterize the stability of the chaotic attractors, are correctly inferred from partial observations. Third, the PI-LSTM outperforms the LH-LSTM by successfully reconstructing the hidden chaotic dynamics when the input dimension is smaller or similar to the Kaplan-Yorke dimension of the attractor. This work opens new opportunities for reconstructing the full state, inferring hidden variables, and computing the stability of chaotic systems from partial data.

Spintronic devices offer a promising avenue for the development of nanoscale, energy-efficient artificial neurons for neuromorphic computing. It has previously been shown that with antiferromagnetic (AFM) oscillators, ultra-fast spiking artificial neurons can be made that mimic many unique features of biological neurons. In this work, we train an artificial neural network of AFM neurons to perform pattern recognition. A simple machine learning algorithm called spike pattern association neuron (SPAN), which relies on the temporal position of neuron spikes, is used during training. In under a microsecond of physical time, the AFM neural network is trained to recognize symbols composed from a grid by producing a spike within a specified time window. We further achieve multi-symbol recognition with the addition of an output layer to suppress undesirable spikes. Through the utilization of AFM neurons and the SPAN algorithm, we create a neural network capable of high-accuracy recognition with overall power consumption on the order of picojoules.

This paper focuses on investigating the density convergence of a fully discrete finite difference method when applied to numerically solve the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noises. The main difficulty lies in the control of the drift coefficient that is neither globally Lipschitz nor one-sided Lipschitz. To handle this difficulty, we propose a novel localization argument and derive the strong convergence rate of the numerical solution to estimate the total variation distance between the exact and numerical solutions. This along with the existence of the density of the numerical solution finally yields the convergence of density in $L^1(\mathbb{R})$ of the numerical solution. Our results partially answer positively to the open problem emerged in [J. Cui and J. Hong, J. Differential Equations (2020)] on computing the density of the exact solution numerically.

Long-span bridges are subjected to a multitude of dynamic excitations during their lifespan. To account for their effects on the structural system, several load models are used during design to simulate the conditions the structure is likely to experience. These models are based on different simplifying assumptions and are generally guided by parameters that are stochastically identified from measurement data, making their outputs inherently uncertain. This paper presents a probabilistic physics-informed machine-learning framework based on Gaussian process regression for reconstructing dynamic forces based on measured deflections, velocities, or accelerations. The model can work with incomplete and contaminated data and offers a natural regularization approach to account for noise in the measurement system. An application of the developed framework is given by an aerodynamic analysis of the Great Belt East Bridge. The aerodynamic response is calculated numerically based on the quasi-steady model, and the underlying forces are reconstructed using sparse and noisy measurements. Results indicate a good agreement between the applied and the predicted dynamic load and can be extended to calculate global responses and the resulting internal forces. Uses of the developed framework include validation of design models and assumptions, as well as prognosis of responses to assist in damage detection and structural health monitoring.

北京阿比特科技有限公司