亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the realm of facial analysis, accurate landmark detection is crucial for various applications, ranging from face recognition and expression analysis to animation. Conventional heatmap or coordinate regression-based techniques, however, often face challenges in terms of computational burden and quantization errors. To address these issues, we present the KeyPoint Positioning System (KeyPosS) - a groundbreaking facial landmark detection framework that stands out from existing methods. The framework utilizes a fully convolutional network to predict a distance map, which computes the distance between a Point of Interest (POI) and multiple anchor points. These anchor points are ingeniously harnessed to triangulate the POI's position through the True-range Multilateration algorithm. Notably, the plug-and-play nature of KeyPosS enables seamless integration into any decoding stage, ensuring a versatile and adaptable solution. We conducted a thorough evaluation of KeyPosS's performance by benchmarking it against state-of-the-art models on four different datasets. The results show that KeyPosS substantially outperforms leading methods in low-resolution settings while requiring a minimal time overhead. The code is available at //github.com/zhiqic/KeyPosS.

相關內容

In software development, it is common for programmers to copy-paste or port code snippets and then adapt them to their use case. This scenario motivates the code adaptation task -- a variant of program repair which aims to adapt variable identifiers in a pasted snippet of code to the surrounding, preexisting source code. However, no existing approach has been shown to effectively address this task. In this paper, we introduce AdaptivePaste, a learning-based approach to source code adaptation, based on transformers and a dedicated dataflow-aware deobfuscation pre-training task to learn meaningful representations of variable usage patterns. We evaluate AdaptivePaste on a dataset of code snippets in Python. Results suggest that our model can learn to adapt source code with 79.8% accuracy. To evaluate how valuable is AdaptivePaste in practice, we perform a user study with 10 Python developers on a hundred real-world copy-paste instances. The results show that AdaptivePaste reduces the dwell time to nearly half the time it takes for manual code adaptation, and helps to avoid bugs. In addition, we utilize the participant feedback to identify potential avenues for improvement of AdaptivePaste.

Robust optimization provides a mathematical framework for modeling and solving decision-making problems under worst-case uncertainty. This work addresses two-stage robust optimization (2RO) problems (also called adjustable robust optimization), wherein first-stage and second-stage decisions are made before and after uncertainty is realized, respectively. This results in a nested min-max-min optimization problem which is extremely challenging computationally, especially when the decisions are discrete. We propose Neur2RO, an efficient machine learning-driven instantiation of column-and-constraint generation (CCG), a classical iterative algorithm for 2RO. Specifically, we learn to estimate the value function of the second-stage problem via a novel neural network architecture that is easy to optimize over by design. Embedding our neural network into CCG yields high-quality solutions quickly as evidenced by experiments on two 2RO benchmarks, knapsack and capital budgeting. For knapsack, Neur2RO finds solutions that are within roughly $2\%$ of the best-known values in a few seconds compared to the three hours of the state-of-the-art exact branch-and-price algorithm; for larger and more complex instances, Neur2RO finds even better solutions. For capital budgeting, Neur2RO outperforms three variants of the $k$-adaptability algorithm, particularly on the largest instances, with a 5 to 10-fold reduction in solution time. Our code and data are available at //github.com/khalil-research/Neur2RO.

With the growth of online services, the need for advanced text classification algorithms, such as sentiment analysis and biased text detection, has become increasingly evident. The anonymous nature of online services often leads to the presence of biased and harmful language, posing challenges to maintaining the health of online communities. This phenomenon is especially relevant in South Korea, where large-scale hate speech detection algorithms have not yet been broadly explored. In this paper, we introduce a new comprehensive, large-scale dataset collected from a well-known South Korean SNS platform. Our proposed dataset provides annotations including (1) Preferences, (2) Profanities, and (3) Nine types of Bias for the text samples, enabling multi-task learning for simultaneous classification of user-generated texts. Leveraging state-of-the-art BERT-based language models, our approach surpasses human-level accuracy across diverse classification tasks, as measured by various metrics. Beyond academic contributions, our work can provide practical solutions for real-world hate speech and bias mitigation, contributing directly to the improvement of online community health. Our work provides a robust foundation for future research aiming to improve the quality of online discourse and foster societal well-being. All source codes and datasets are publicly accessible at //github.com/Dasol-Choi/KoMultiText.

In most works on deep incremental learning research, it is assumed that novel samples are pre-identified for neural network retraining. However, practical deep classifiers often misidentify these samples, leading to erroneous predictions. Such misclassifications can degrade model performance. Techniques like open set recognition offer a means to detect these novel samples, representing a significant area in the machine learning domain. In this paper, we introduce a deep class-incremental learning framework integrated with open set recognition. Our approach refines class-incrementally learned features to adapt them for distance-based open set recognition. Experimental results validate that our method outperforms state-of-the-art incremental learning techniques and exhibits superior performance in open set recognition compared to baseline methods.

The recent progress in large language models (LLMs), especially the invention of chain-of-thought prompting, has made it possible to automatically answer questions by stepwise reasoning. However, when faced with more complicated problems that require non-linear thinking, even the strongest LLMs make mistakes. To address this, we explore whether LLMs are able to recognize errors in their own step-by-step reasoning, without resorting to external resources. To this end, we propose SelfCheck, a general-purpose zero-shot verification schema for recognizing such errors. We then use the results of these checks to improve question-answering performance by conducting weighted voting on multiple solutions to the question. We test SelfCheck on three datasets (GSM8K, MathQA, and MATH) and find that it successfully recognizes errors and, in turn, increases final answer accuracies.

Robotic manipulation requires accurate perception of the environment, which poses a significant challenge due to its inherent complexity and constantly changing nature. In this context, RGB image and point-cloud observations are two commonly used modalities in visual-based robotic manipulation, but each of these modalities have their own limitations. Commercial point-cloud observations often suffer from issues like sparse sampling and noisy output due to the limits of the emission-reception imaging principle. On the other hand, RGB images, while rich in texture information, lack essential depth and 3D information crucial for robotic manipulation. To mitigate these challenges, we propose an image-only robotic manipulation framework that leverages an eye-on-hand monocular camera installed on the robot's parallel gripper. By moving with the robot gripper, this camera gains the ability to actively perceive object from multiple perspectives during the manipulation process. This enables the estimation of 6D object poses, which can be utilized for manipulation. While, obtaining images from more and diverse viewpoints typically improves pose estimation, it also increases the manipulation time. To address this trade-off, we employ a reinforcement learning policy to synchronize the manipulation strategy with active perception, achieving a balance between 6D pose accuracy and manipulation efficiency. Our experimental results in both simulated and real-world environments showcase the state-of-the-art effectiveness of our approach. %, which, to the best of our knowledge, is the first to achieve robust real-world robotic manipulation through active pose estimation. We believe that our method will inspire further research on real-world-oriented robotic manipulation.

Identifying, analyzing, and evaluating cybersecurity risks are essential to assess the vulnerabilities of modern manufacturing infrastructures and to devise effective decision-making strategies to secure critical manufacturing against potential cyberattacks. In response, this work proposes a graph-theoretic approach for risk modeling and assessment to address the lack of quantitative cybersecurity risk assessment frameworks for smart manufacturing systems. In doing so, first, threat attributes are represented using an attack graphical model derived from manufacturing cyberattack taxonomies. Attack taxonomies offer consistent structures to categorize threat attributes, and the graphical approach helps model their interdependence. Second, the graphs are analyzed to explore how threat events can propagate through the manufacturing value chain and identify the manufacturing assets that threat actors can access and compromise during a threat event. Third, the proposed method identifies the attack path that maximizes the likelihood of success and minimizes the attack detection probability, and then computes the associated cybersecurity risk. Finally, the proposed risk modeling and assessment framework is demonstrated via an interconnected smart manufacturing system illustrative example. Using the proposed approach, practitioners can identify critical connections and manufacturing assets requiring prioritized security controls and develop and deploy appropriate defense measures accordingly.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司