亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Robotic manipulation requires accurate perception of the environment, which poses a significant challenge due to its inherent complexity and constantly changing nature. In this context, RGB image and point-cloud observations are two commonly used modalities in visual-based robotic manipulation, but each of these modalities have their own limitations. Commercial point-cloud observations often suffer from issues like sparse sampling and noisy output due to the limits of the emission-reception imaging principle. On the other hand, RGB images, while rich in texture information, lack essential depth and 3D information crucial for robotic manipulation. To mitigate these challenges, we propose an image-only robotic manipulation framework that leverages an eye-on-hand monocular camera installed on the robot's parallel gripper. By moving with the robot gripper, this camera gains the ability to actively perceive object from multiple perspectives during the manipulation process. This enables the estimation of 6D object poses, which can be utilized for manipulation. While, obtaining images from more and diverse viewpoints typically improves pose estimation, it also increases the manipulation time. To address this trade-off, we employ a reinforcement learning policy to synchronize the manipulation strategy with active perception, achieving a balance between 6D pose accuracy and manipulation efficiency. Our experimental results in both simulated and real-world environments showcase the state-of-the-art effectiveness of our approach. %, which, to the best of our knowledge, is the first to achieve robust real-world robotic manipulation through active pose estimation. We believe that our method will inspire further research on real-world-oriented robotic manipulation.

相關內容

機(ji)(ji)器(qi)人(ren)(ren)(英語(yu):Robot)包括(kuo)一切模擬(ni)(ni)人(ren)(ren)類(lei)行為或思想與模擬(ni)(ni)其他生物的(de)機(ji)(ji)械(xie)(如機(ji)(ji)器(qi)狗,機(ji)(ji)器(qi)貓等)。狹義(yi)上(shang)對機(ji)(ji)器(qi)人(ren)(ren)的(de)定義(yi)還有很多(duo)分類(lei)法及爭議,有些電腦程序甚至(zhi)也被稱為機(ji)(ji)器(qi)人(ren)(ren)。在(zai)當代(dai)工(gong)業中,機(ji)(ji)器(qi)人(ren)(ren)指能自(zi)動運(yun)行任務的(de)人(ren)(ren)造機(ji)(ji)器(qi)設備(bei),用以取(qu)代(dai)或協助(zhu)人(ren)(ren)類(lei)工(gong)作,一般會是(shi)機(ji)(ji)電設備(bei),由計算機(ji)(ji)程序或是(shi)電子電路控制。

知識薈萃

精品入門和(he)進階教程、論文(wen)和(he)代碼整理(li)等

更多

查看相關(guan)VIP內容、論文、資訊等

3D reconstruction of dynamic scenes is a long-standing problem in computer graphics and increasingly difficult the less information is available. Shape-from-Template (SfT) methods aim to reconstruct a template-based geometry from RGB images or video sequences, often leveraging just a single monocular camera without depth information, such as regular smartphone recordings. Unfortunately, existing reconstruction methods are either unphysical and noisy or slow in optimization. To solve this problem, we propose a novel SfT reconstruction algorithm for cloth using a pre-trained neural surrogate model that is fast to evaluate, stable, and produces smooth reconstructions due to a regularizing physics simulation. Differentiable rendering of the simulated mesh enables pixel-wise comparisons between the reconstruction and a target video sequence that can be used for a gradient-based optimization procedure to extract not only shape information but also physical parameters such as stretching, shearing, or bending stiffness of the cloth. This allows to retain a precise, stable, and smooth reconstructed geometry while reducing the runtime by a factor of 400-500 compared to $\phi$-SfT, a state-of-the-art physics-based SfT approach.

Wayfinding in complex indoor environments is often challenging for older adults due to declines in navigational and spatial-cognition abilities. This paper introduces NavMarkAR, an augmented reality navigation system designed for smart-glasses to provide landmark-based guidance, aiming to enhance older adults' spatial navigation skills. This work addresses a significant gap in design research, with limited prior studies evaluating cognitive impacts of AR navigation systems. An initial usability test involved 6 participants, leading to prototype refinements, followed by a comprehensive study with 32 participants in a university setting. Results indicate improved wayfinding efficiency and cognitive map accuracy when using NavMarkAR. Future research will explore long-term cognitive skill retention with such navigational aids.

In real-world scenarios, although data entities may possess inherent relationships, the specific graph illustrating their connections might not be directly accessible. Latent graph inference addresses this issue by enabling Graph Neural Networks (GNNs) to operate on point cloud data, dynamically learning the necessary graph structure. These graphs are often derived from a latent embedding space, which can be modeled using Euclidean, hyperbolic, spherical, or product spaces. However, currently, there is no principled differentiable method for determining the optimal embedding space. In this work, we introduce the Attentional Multi-Embedding Selection (AMES) framework, a differentiable method for selecting the best embedding space for latent graph inference through backpropagation, considering a downstream task. Our framework consistently achieves comparable or superior results compared to previous methods for latent graph inference across five benchmark datasets. Importantly, our approach eliminates the need for conducting multiple experiments to identify the optimal embedding space. Furthermore, we explore interpretability techniques that track the gradient contributions of different latent graphs, shedding light on how our attention-based, fully differentiable approach learns to choose the appropriate latent space. In line with previous works, our experiments emphasize the advantages of hyperbolic spaces in enhancing performance. More importantly, our interpretability framework provides a general approach for quantitatively comparing embedding spaces across different tasks based on their contributions, a dimension that has been overlooked in previous literature on latent graph inference.

The continuous rise in the adoption of emerging technologies such as Internet of Things (IoT) by businesses has brought unprecedented opportunities for innovation and growth. However, due to the distinct characteristics of these emerging IoT technologies like real-time data processing, Self-configuration, interoperability, and scalability, they have also introduced some unique cybersecurity challenges, such as malware attacks, advanced persistent threats (APTs), DoS /DDoS (Denial of Service & Distributed Denial of Service attacks) and insider threats. As a result of these challenges, there is an increased need for improved cybersecurity approaches and efficient management solutions to ensure the privacy and security of communication within IoT networks. One proposed security approach is the utilization of trust-based systems and is the focus of this study. This research paper presents a systematic literature review on the Trust-based cybersecurity security approaches for IoT. A total of 23 articles were identified that satisfy the review criteria. We highlighted the common trust-based mitigation techniques in existence for dealing with these threats and grouped them into three major categories, namely: Observation-Based, Knowledge-Based & Cluster-Based systems. Finally, several open issues were highlighted, and future research directions presented.

Federated Learning (FL) has been recently receiving increasing consideration from the cybersecurity community as a way to collaboratively train deep learning models with distributed profiles of cyber threats, with no disclosure of training data. Nevertheless, the adoption of FL in cybersecurity is still in its infancy, and a range of practical aspects have not been properly addressed yet. Indeed, the Federated Averaging algorithm at the core of the FL concept requires the availability of test data to control the FL process. Although this might be feasible in some domains, test network traffic of newly discovered attacks cannot be always shared without disclosing sensitive information. In this paper, we address the convergence of the FL process in dynamic cybersecurity scenarios, where the trained model must be frequently updated with new recent attack profiles to empower all members of the federation with the latest detection features. To this aim, we propose FLAD (adaptive Federated Learning Approach to DDoS attack detection), an FL solution for cybersecurity applications based on an adaptive mechanism that orchestrates the FL process by dynamically assigning more computation to those members whose attacks profiles are harder to learn, without the need of sharing any test data to monitor the performance of the trained model. Using a recent dataset of DDoS attacks, we demonstrate that FLAD outperforms state-of-the-art FL algorithms in terms of convergence time and accuracy across a range of unbalanced datasets of heterogeneous DDoS attacks. We also show the robustness of our approach in a realistic scenario, where we retrain the deep learning model multiple times to introduce the profiles of new attacks on a pre-trained model.

Graph anomaly detection (GAD) has gained increasing attention in recent years due to its critical application in a wide range of domains, such as social networks, financial risk management, and traffic analysis. Existing GAD methods can be categorized into node and edge anomaly detection models based on the type of graph objects being detected. However, these methods typically treat node and edge anomalies as separate tasks, overlooking their associations and frequent co-occurrences in real-world graphs. As a result, they fail to leverage the complementary information provided by node and edge anomalies for mutual detection. Additionally, state-of-the-art GAD methods, such as CoLA and SL-GAD, heavily rely on negative pair sampling in contrastive learning, which incurs high computational costs, hindering their scalability to large graphs. To address these limitations, we propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE). We extract a subgraph (graph view) centered on each target node as node context and transform it into a dual hypergraph (hypergraph view) as edge context. These views are encoded using graph and hypergraph neural networks to capture the representations of nodes, edges, and their associated contexts. By swapping the context embeddings between nodes and edges and measuring the agreement in the embedding space, we enable the mutual detection of node and edge anomalies. Furthermore, BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs. Extensive experiments conducted on six benchmark datasets demonstrate the superior effectiveness and efficiency of BOURNE in detecting both node and edge anomalies.

Multimodal emotion recognition aims to recognize emotions for each utterance of multiple modalities, which has received increasing attention for its application in human-machine interaction. Current graph-based methods fail to simultaneously depict global contextual features and local diverse uni-modal features in a dialogue. Furthermore, with the number of graph layers increasing, they easily fall into over-smoothing. In this paper, we propose a method for joint modality fusion and graph contrastive learning for multimodal emotion recognition (Joyful), where multimodality fusion, contrastive learning, and emotion recognition are jointly optimized. Specifically, we first design a new multimodal fusion mechanism that can provide deep interaction and fusion between the global contextual and uni-modal specific features. Then, we introduce a graph contrastive learning framework with inter-view and intra-view contrastive losses to learn more distinguishable representations for samples with different sentiments. Extensive experiments on three benchmark datasets indicate that Joyful achieved state-of-the-art (SOTA) performance compared to all baselines.

Learning representations through self-supervision on unlabeled data has proven highly effective for understanding diverse images. However, remote sensing images often have complex and densely populated scenes with multiple land objects and no clear foreground objects. This intrinsic property generates high object density, resulting in false positive pairs or missing contextual information in self-supervised learning. To address these problems, we propose a context-enhanced masked image modeling method (CtxMIM), a simple yet efficient MIM-based self-supervised learning for remote sensing image understanding. CtxMIM formulates original image patches as a reconstructive template and employs a Siamese framework to operate on two sets of image patches. A context-enhanced generative branch is introduced to provide contextual information through context consistency constraints in the reconstruction. With the simple and elegant design, CtxMIM encourages the pre-training model to learn object-level or pixel-level features on a large-scale dataset without specific temporal or geographical constraints. Finally, extensive experiments show that features learned by CtxMIM outperform fully supervised and state-of-the-art self-supervised learning methods on various downstream tasks, including land cover classification, semantic segmentation, object detection, and instance segmentation. These results demonstrate that CtxMIM learns impressive remote sensing representations with high generalization and transferability. Code and data will be made public available.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司