亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the rapid development of high-speed railway systems and railway wireless communication, the application of ultra-wideband millimeter wave band is an inevitable trend. However, the millimeter wave channel has large propagation loss and is easy to be blocked. Moreover, there are many problems such as eavesdropping between the base station (BS) and the train. As an emerging technology, reconfigurable intelligent surface (RIS) can achieve the effect of passive beamforming by controlling the propagation of the incident electromagnetic wave in the desired direction.We propose a RIS-assisted scheduling scheme for scheduling interrupted transmission and improving quality of service (QoS).In the propsed scheme, an RIS is deployed between the BS and multiple mobile relays (MRs). By jointly optimizing the beamforming vector and the discrete phase shift of the RIS, the constructive interference between direct link signals and indirect link signals can be achieved, and the channel capacity of eavesdroppers is guaranteed to be within a controllable range. Finally, the purpose of maximizing the number of successfully scheduled tasks and satisfying their QoS requirements can be practically realized. Extensive simulations demonstrate that the proposed scheme has superior performance regarding the number of completed tasks and the system secrecy capacity over four baseline schemes in literature.

相關內容

Orthogonal time frequency space (OTFS) modulation is a recently proposed delay-Doppler (DD) domain communication scheme, which has shown promising performance in general wireless communications, especially over high-mobility channels. In this paper, we investigate DD domain Tomlinson-Harashima precoding (THP) for downlink multiuser multiple-input and multiple-output OTFS (MU-MIMO-OTFS) transmissions. Instead of directly applying THP based on the huge equivalent channel matrix, we propose a simple implementation of THP that does not require any matrix decomposition or inversion. Such a simple implementation is enabled by the DD domain channel property, i.e., different resolvable paths do not share the same delay and Doppler shifts, which makes it possible to pre-cancel all the DD domain interference in a symbol-by-symbol manner. We also study the achievable rate performance for the proposed scheme by leveraging the information-theoretical equivalent models. In particular, we show that the proposed scheme can achieve a near optimal performance in the high signal-to-noise ratio (SNR) regime. More importantly, scaling laws for achievable rates with respect to number of antennas and users are derived, which indicate that the achievable rate increases logarithmically with the number of antennas and linearly with the number of users. Our numerical results align well with our findings and also demonstrate a significant improvement compared to existing MU-MIMO schemes on OTFS and orthogonal frequency-division multiplexing (OFDM).

Community detection is a key aspect of network analysis, as it allows for the identification of groups and patterns within a network. With the ever-increasing size of networks, it is crucial to have fast algorithms to analyze them efficiently. It is a modularity-based greedy algorithm that divides a network into disconnected communities better over several iterations. Even in big, dense networks, it is renowned for establishing high-quality communities. However it can be at least a factor of ten slower than community discovery techniques that rely on label-propagation, which are generally extremely fast but obtain communities of lower quality. The researchers have suggested a number of methods for parallelizing and improving the Louvain algorithm. To decide which strategy is generally the best fit and which parameter values produce the highest performance without compromising community quality, it is critical to assess the performance and accuracy of these existing approaches. As we implement the single-threaded and multi-threaded versions of the static Louvain algorithm in this report, we carefully examine the method's specifics, make the required tweaks and optimizations, and determine the right parameter values. The tolerance between each pass can be changed to adjust the method's performance. With an initial tolerance of 0.01 and a tolerance decline factor of 10, an asynchronous version of the algorithm produced the best results. Generally speaking, according to our findings, the approach is not well suited for shared-memory parallelism; however, one potential workaround is to break the graph into manageable chunks that can be independently executed and then merged back together.

Extremely large-scale array (XL-array) is envisioned to achieve super-high spectral efficiency in future wireless networks. Different from the existing works that mostly focus on the near-field communications, we consider in this paper a new and practical scenario, called mixed near- and far-field communications, where there exist both near- and far-field users in the network. For this scenario, we first obtain a closed-form expression for the inter-user interference at the near-field user caused by the far-field beam by using Fresnel functions, based on which the effects of the number of BS antennas, far-field user (FU) angle, near-field user (NU) angle and distance are analyzed. We show that the strong interference exists when the number of the BS antennas and the NU distance are relatively small, and/or the NU and FU angle-difference is small. Then, we further obtain the achievable rate of the NU as well as its rate loss caused by the FU interference. Last, numerical results are provided to corroborate our analytical results.

Snoring is one of the most prominent symptoms of Obstructive Sleep Apnea-Hypopnea Syndrome (OSAH), a highly prevalent disease that causes repetitive collapse and cessation of the upper airway. Thus, accurate snore sound monitoring and analysis is crucial. However, the traditional monitoring method polysomnography (PSG) requires the patients to stay at a sleep clinic for the whole night and be connected to many pieces of equipment. An alternative and less invasive way is passive monitoring using a smartphone at home or in the clinical settings. But, there is a challenge: the environment may be shared by people such that the raw audio may contain the snore activities of the bed partner or other person. False capturing of the snoring activity could lead to critical false alarms and misdiagnosis of the patients. To address this limitation, we propose a hypothesis that snore sound contains unique identity information which can be used for user recognition. We analyzed various machine learning models: Gaussian Mixture Model (GMM), GMM-UBM (Universial Background Model), and a Deep Neural Network (DNN) on MPSSC - an open source snoring dataset to evaluate the validity of our hypothesis. Our results are promising as we achieved around 90% accuracy in identification and verification tasks. This work marks the first step towards understanding the practicality of snore based user monitoring to enable multiple healthcare applicaitons.

The reconfigurable intelligent surface (RIS) is useful to effectively improve the coverage and data rate of end-to-end communications. In contrast to the well-studied coverage-extension use case, in this paper, multiple RIS panels are introduced, aiming to enhance the data rate of multi-input multi-output (MIMO) channels in presence of insufficient scattering. Specifically, via the operator-valued free probability theory, the asymptotic mutual information of the large-dimensional RIS-assisted MIMO channel is obtained under the Rician fading with Weichselberger's correlation structure, in presence of both the direct and the reflected links. Although the mutual information of Rician MIMO channels scales linearly as the number of antennas and the signal-to-noise ratio (SNR) in decibels, numerical results show that it requires sufficiently large SNR, proportional to the Rician factor, in order to obtain the theoretically guaranteed linear improvement. This paper shows that the proposed multi-RIS deployment is especially effective to improve the mutual information of MIMO channels under the large Rician factor conditions. When the reflected links have similar arriving and departing angles across the RIS panels, a small number of RIS panels are sufficient to harness the spatial degree of freedom of the multi-RIS assisted MIMO channels.

Learning in neural networks is often framed as a problem in which targeted error signals are directly propagated to parameters and used to produce updates that induce more optimal network behaviour. Backpropagation of error (BP) is an example of such an approach and has proven to be a highly successful application of stochastic gradient descent to deep neural networks. We propose constrained parameter inference (COPI) as a new principle for learning. The COPI approach assumes that learning can be set up in a manner where parameters infer their own values based upon observations of their local neuron activities. We find that this estimation of network parameters is possible under the constraints of decorrelated neural inputs and top-down perturbations of neural states for credit assignment. We show that the decorrelation required for COPI allows learning at extremely high learning rates, competitive with that of adaptive optimizers, as used by BP. We further demonstrate that COPI affords a new approach to feature analysis and network compression. Finally, we argue that COPI may shed new light on learning in biological networks given the evidence for decorrelation in the brain.

Multiparty Session Types (MPST) are a typing discipline for communication-centric systems, guaranteeing communication safety, deadlock freedom and protocol compliance. Several works have emerged which model failures and introduce fault-tolerance techniques. However, such works often make assumptions on the underlying network, e.g., TCP-based communication where messages are guaranteed to be delivered; or adopt centralised reliable nodes and an ad-hoc notion of reliability; or only address a single kind of failure, such as node crash failures. In this work, we develop MAG$\pi$ -- a Multiparty, Asynchronous and Generalised $\pi$-calculus, which is the first language and type system to accommodate in unison: (i) the widest range of non-Byzantine faults, including message loss, delays and reordering; crash failures and link failures; and network partitioning; (ii) a novel and most general notion of reliability, taking into account the viewpoint of each participant in the protocol; (iii) a spectrum of network assumptions from the lowest UDP-based network programming to the TCP-based application level. We prove subject reduction and session fidelity; process properties (deadlock freedom, termination, etc.); failure-handling safety and reliability adherence.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

北京阿比特科技有限公司