亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multiparty Session Types (MPST) are a typing discipline for communication-centric systems, guaranteeing communication safety, deadlock freedom and protocol compliance. Several works have emerged which model failures and introduce fault-tolerance techniques. However, such works often make assumptions on the underlying network, e.g., TCP-based communication where messages are guaranteed to be delivered; or adopt centralised reliable nodes and an ad-hoc notion of reliability; or only address a single kind of failure, such as node crash failures. In this work, we develop MAG$\pi$ -- a Multiparty, Asynchronous and Generalised $\pi$-calculus, which is the first language and type system to accommodate in unison: (i) the widest range of non-Byzantine faults, including message loss, delays and reordering; crash failures and link failures; and network partitioning; (ii) a novel and most general notion of reliability, taking into account the viewpoint of each participant in the protocol; (iii) a spectrum of network assumptions from the lowest UDP-based network programming to the TCP-based application level. We prove subject reduction and session fidelity; process properties (deadlock freedom, termination, etc.); failure-handling safety and reliability adherence.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際(ji)網(wang)絡會議。 Publisher:IFIP。 SIT:

With the rise of AI and data mining techniques, group profiling and group-level analysis have been increasingly used in many domains including policy making and direct marketing. In some cases, the statistics extracted from data may provide insights to a group's shared characteristics; in others, the group-level analysis can lead to problems including stereotyping and systematic oppression. How can analytic tools facilitate a more conscientious process in group analysis? In this work, we identify a set of accountable group analytics design guidelines to explicate the needs for group differentiation and preventing overgeneralization of a group. Following the design guidelines, we develop TribalGram, a visual analytic suite that leverages interpretable machine learning algorithms and visualization to offer inference assessment, model explanation, data corroboration, and sense-making. Through the interviews with domain experts, we showcase how our design and tools can bring a richer understanding of "groups" mined from the data.

With the increasing complexity of software permeating critical domains such as autonomous driving, new challenges are emerging in the ways the engineering of these systems needs to be rethought. Autonomous driving is expected to continue gradually overtaking all critical driving functions, which is adding to the complexity of the certification of autonomous driving systems. As a response, certification authorities have already started introducing strategies for the certification of autonomous vehicles and their software. But even with these new approaches, the certification procedures are not fully catching up with the dynamism and unpredictability of future autonomous systems, and thus may not necessarily guarantee compliance with all requirements imposed on these systems. In this paper, we identified a number of issues with the proposed certification strategies, which may impact the systems substantially. For instance, we emphasize the lack of adequate reflection on software changes occurring in constantly changing systems, or low support for systems' cooperation needed for the management of coordinated moves. Other shortcomings concern the narrow focus of the awarded certification by neglecting aspects such as the ethical behavior of autonomous software systems. The contribution of this paper is threefold. First, we discuss the motivation for the need to modify the current certification processes for autonomous driving systems. Second, we analyze current international standards used in the certification processes towards requirements derived from the requirements laid on dynamic software ecosystems and autonomous systems themselves. Third, we outline a concept for incorporating the missing parts into the certification procedure.

Recent work has proposed artificial intelligence (AI) models that can learn to decide whether to make a prediction for an instance of a task or to delegate it to a human by considering both parties' capabilities. In simulations with synthetically generated or context-independent human predictions, delegation can help improve the performance of human-AI teams -- compared to humans or the AI model completing the task alone. However, so far, it remains unclear how humans perform and how they perceive the task when they are aware that an AI model delegated task instances to them. In an experimental study with 196 participants, we show that task performance and task satisfaction improve through AI delegation, regardless of whether humans are aware of the delegation. Additionally, we identify humans' increased levels of self-efficacy as the underlying mechanism for these improvements in performance and satisfaction. Our findings provide initial evidence that allowing AI models to take over more management responsibilities can be an effective form of human-AI collaboration in workplaces.

Coreference resolution models are often evaluated on multiple datasets. Datasets vary, however, in how coreference is realized -- i.e., how the theoretical concept of coreference is operationalized in the dataset -- due to factors such as the choice of corpora and annotation guidelines. We investigate the extent to which errors of current coreference resolution models are associated with existing differences in operationalization across datasets (OntoNotes, PreCo, and Winogrande). Specifically, we distinguish between and break down model performance into categories corresponding to several types of coreference, including coreferring generic mentions, compound modifiers, and copula predicates, among others. This break down helps us investigate how state-of-the-art models might vary in their ability to generalize across different coreference types. In our experiments, for example, models trained on OntoNotes perform poorly on generic mentions and copula predicates in PreCo. Our findings help calibrate expectations of current coreference resolution models; and, future work can explicitly account for those types of coreference that are empirically associated with poor generalization when developing models.

A rapidly increasing amount of human conversation occurs online. But divisiveness and conflict can fester in text-based interactions on social media platforms, in messaging apps, and on other digital forums. Such toxicity increases polarization and, importantly, corrodes the capacity of diverse societies to develop efficient solutions to complex social problems that impact everyone. Scholars and civil society groups promote interventions that can make interpersonal conversations less divisive or more productive in offline settings, but scaling these efforts to the amount of discourse that occurs online is extremely challenging. We present results of a large-scale experiment that demonstrates how online conversations about divisive topics can be improved with artificial intelligence tools. Specifically, we employ a large language model to make real-time, evidence-based recommendations intended to improve participants' perception of feeling understood in conversations. We find that these interventions improve the reported quality of the conversation, reduce political divisiveness, and improve the tone, without systematically changing the content of the conversation or moving people's policy attitudes. These findings have important implications for future research on social media, political deliberation, and the growing community of scholars interested in the place of artificial intelligence within computational social science.

Persuasion is a key aspect of what it means to be human, and is central to business, politics, and other endeavors. Advancements in artificial intelligence (AI) have produced AI systems that are capable of persuading humans to buy products, watch videos, click on search results, and more. Even systems that are not explicitly designed to persuade may do so in practice. In the future, increasingly anthropomorphic AI systems may form ongoing relationships with users, increasing their persuasive power. This paper investigates the uncertain future of persuasive AI systems. We examine ways that AI could qualitatively alter our relationship to and views regarding persuasion by shifting the balance of persuasive power, allowing personalized persuasion to be deployed at scale, powering misinformation campaigns, and changing the way humans can shape their own discourse. We consider ways AI-driven persuasion could differ from human-driven persuasion. We warn that ubiquitous highlypersuasive AI systems could alter our information environment so significantly so as to contribute to a loss of human control of our own future. In response, we examine several potential responses to AI-driven persuasion: prohibition, identification of AI agents, truthful AI, and legal remedies. We conclude that none of these solutions will be airtight, and that individuals and governments will need to take active steps to guard against the most pernicious effects of persuasive AI.

The use of machine learning (ML) techniques in the biomedical field has become increasingly important, particularly with the large amounts of data generated by the aftermath of the COVID-19 pandemic. However, due to the complex nature of biomedical datasets and the use of black-box ML models, a lack of trust and adoption by domain experts can arise. In response, interpretable ML (IML) approaches have been developed, but the curse of dimensionality in biomedical datasets can lead to model instability. This paper proposes a novel computational strategy for the stratification of biomedical problem datasets into k-fold cross-validation (CVs) and integrating domain knowledge interpretation techniques embedded into the current state-of-the-art IML frameworks. This approach can improve model stability, establish trust, and provide explanations for outcomes generated by trained IML models. Specifically, the model outcome, such as aggregated feature weight importance, can be linked to further domain knowledge interpretations using techniques like pathway functional enrichment, drug targeting, and repurposing databases. Additionally, involving end-users and clinicians in focus group discussions before and after the choice of IML framework can help guide testable hypotheses, improve performance metrics, and build trustworthy and usable IML solutions in the biomedical field. Overall, this study highlights the potential of combining advanced computational techniques with domain knowledge interpretation to enhance the effectiveness of IML solutions in the context of complex biomedical datasets.

Due to large reflection and diffraction losses in the THz band, it is arguable to achieve reliable links in the none-line-of-sight (NLoS) cases. Intelligent reflecting surfaces, although are expected to solve the blockage problem and enhance the system connectivity, suffer from power consumption and operation complexity. In this work, non-intelligent reflecting surface (NIRS), which are simply made of costless metal foils and have no signal configuration capability, are adopted to enhance the signal strength and coverage in the THz band. Channel measurements are conducted in typical indoor scenarios at 300 GHz band to validate the effectiveness of the NIRS. Based on the measurement results, the positive influences of the NIRS are studied, including the improvement of path power and coverage. Numerical results show that by invoking the NIRS, the power of reflected/scattering paths can be increased by more than 10 dB. Moreover, with the NIRS, over half area in the measured scenario has doubled received power and the coverage ratio for a 10 dB signal-to-noise ratio threshold is increased by up to 39%.

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司