Optimal transport (OT) offers a versatile framework to compare complex data distributions in a geometrically meaningful way. Traditional methods for computing the Wasserstein distance and geodesic between probability measures require mesh-dependent domain discretization and suffer from the curse-of-dimensionality. We present GeONet, a mesh-invariant deep neural operator network that learns the non-linear mapping from the input pair of initial and terminal distributions to the Wasserstein geodesic connecting the two endpoint distributions. In the offline training stage, GeONet learns the saddle point optimality conditions for the dynamic formulation of the OT problem in the primal and dual spaces that are characterized by a coupled PDE system. The subsequent inference stage is instantaneous and can be deployed for real-time predictions in the online learning setting. We demonstrate that GeONet achieves comparable testing accuracy to the standard OT solvers on simulation examples and the MNIST dataset with considerably reduced inference-stage computational cost by orders of magnitude.
We investigate the use of multilevel Monte Carlo (MLMC) methods for estimating the expectation of discretized random fields. Specifically, we consider a setting in which the input and output vectors of the numerical simulators have inconsistent dimensions across the multilevel hierarchy. This requires the introduction of grid transfer operators borrowed from multigrid methods. Starting from a simple 1D illustration, we demonstrate numerically that the resulting MLMC estimator deteriorates the estimation of high-frequency components of the discretized expectation field compared to a Monte Carlo (MC) estimator. By adapting mathematical tools initially developed for multigrid methods, we perform a theoretical spectral analysis of the MLMC estimator of the expectation of discretized random fields, in the specific case of linear, symmetric and circulant simulators. This analysis provides a spectral decomposition of the variance into contributions associated with each scale component of the discretized field. We then propose improved MLMC estimators using a filtering mechanism similar to the smoothing process of multigrid methods. The filtering operators improve the estimation of both the small- and large-scale components of the variance, resulting in a reduction of the total variance of the estimator. These improvements are quantified for the specific class of simulators considered in our spectral analysis. The resulting filtered MLMC (F-MLMC) estimator is applied to the problem of estimating the discretized variance field of a diffusion-based covariance operator, which amounts to estimating the expectation of a discretized random field. The numerical experiments support the conclusions of the theoretical analysis even with non-linear simulators, and demonstrate the improvements brought by the proposed F-MLMC estimator compared to both a crude MC and an unfiltered MLMC estimator.
We present the new Orthogonal Polynomials Approximation Algorithm (OPAA), a parallelizable algorithm that solves two problems from a functional analytic approach: first, it finds a smooth functional estimate of a density function, whether it is normalized or not; second, the algorithm provides an estimate of the normalizing weight. In the context of Bayesian inference, OPAA provides an estimate of the posterior function as well as the normalizing weight, which is also known as the evidence. A core component of OPAA is a special transform of the square root of the joint distribution into a special functional space of our construct. Through this transform, the evidence is equated with the $L^2$ norm of the transformed function, squared. Hence, the evidence can be estimated by the sum of squares of the transform coefficients. The computations can be parallelized and completed in one pass. To compute the transform coefficients, OPAA proposes a new computational scheme leveraging Gauss--Hermite quadrature in higher dimensions. Not only does it avoid the potential high variance problem associated with random sampling methods, it also enables one to speed up the computation by parallelization, and significantly reduces the complexity by a vector decomposition.
One of the main challenges of multimodal learning is the need to combine heterogeneous modalities (e.g., video, audio, text). For example, video and audio are obtained at much higher rates than text and are roughly aligned in time. They are often not synchronized with text, which comes as a global context, e.g., a title, or a description. Furthermore, video and audio inputs are of much larger volumes, and grow as the video length increases, which naturally requires more compute dedicated to these modalities and makes modeling of long-range dependencies harder. We here decouple the multimodal modeling, dividing it into separate, focused autoregressive models, processing the inputs according to the characteristics of the modalities. We propose a multimodal model, called Mirasol3B, consisting of an autoregressive component for the time-synchronized modalities (audio and video), and an autoregressive component for the context modalities which are not necessarily aligned in time but are still sequential. To address the long-sequences of the video-audio inputs, we propose to further partition the video and audio sequences in consecutive snippets and autoregressively process their representations. To that end, we propose a Combiner mechanism, which models the audio-video information jointly within a timeframe. The Combiner learns to extract audio and video features from raw spatio-temporal signals, and then learns to fuse these features producing compact but expressive representations per snippet. Our approach achieves the state-of-the-art on well established multimodal benchmarks, outperforming much larger models. It effectively addresses the high computational demand of media inputs by both learning compact representations, controlling the sequence length of the audio-video feature representations, and modeling their dependencies in time.
A Retrieval-Augmented Language Model (RALM) augments a generative language model by retrieving context-specific knowledge from an external database. This strategy facilitates impressive text generation quality even with smaller models, thus reducing orders of magnitude of computational demands. However, RALMs introduce unique system design challenges due to (a) the diverse workload characteristics between LM inference and retrieval and (b) the various system requirements and bottlenecks for different RALM configurations such as model sizes, database sizes, and retrieval frequencies. We propose Chameleon, a heterogeneous accelerator system that integrates both LM and retrieval accelerators in a disaggregated architecture. The heterogeneity ensures efficient acceleration of both LM inference and retrieval, while the accelerator disaggregation enables the system to independently scale both types of accelerators to fulfill diverse RALM requirements. Our Chameleon prototype implements retrieval accelerators on FPGAs and assigns LM inference to GPUs, with a CPU server orchestrating these accelerators over the network. Compared to CPU-based and CPU-GPU vector search systems, Chameleon achieves up to 23.72x speedup and 26.2x energy efficiency. Evaluated on various RALMs, Chameleon exhibits up to 2.16x reduction in latency and 3.18x speedup in throughput compared to the hybrid CPU-GPU architecture. These promising results pave the way for bringing accelerator heterogeneity and disaggregation into future RALM systems.
Learning tasks play an increasingly prominent role in quantum information and computation. They range from fundamental problems such as state discrimination and metrology over the framework of quantum probably approximately correct (PAC) learning, to the recently proposed shadow variants of state tomography. However, the many directions of quantum learning theory have so far evolved separately. We propose a general mathematical formalism for describing quantum learning by training on classical-quantum data and then testing how well the learned hypothesis generalizes to new data. In this framework, we prove bounds on the expected generalization error of a quantum learner in terms of classical and quantum information-theoretic quantities measuring how strongly the learner's hypothesis depends on the specific data seen during training. To achieve this, we use tools from quantum optimal transport and quantum concentration inequalities to establish non-commutative versions of decoupling lemmas that underlie recent information-theoretic generalization bounds for classical machine learning. Our framework encompasses and gives intuitively accessible generalization bounds for a variety of quantum learning scenarios such as quantum state discrimination, PAC learning quantum states, quantum parameter estimation, and quantumly PAC learning classical functions. Thereby, our work lays a foundation for a unifying quantum information-theoretic perspective on quantum learning.
This paper considers the extension of data-enabled predictive control (DeePC) to nonlinear systems via general basis functions. Firstly, we formulate a basis functions DeePC behavioral predictor and we identify necessary and sufficient conditions for equivalence with a corresponding basis functions multi-step identified predictor. The derived conditions yield a dynamic regularization cost function that enables a well-posed (i.e., consistent) basis functions formulation of nonlinear DeePC. To optimize computational efficiency of basis functions DeePC we further develop two alternative formulations that use a simpler, sparse regularization cost function and ridge regression, respectively. Consistency implications for Koopman DeePC as well as several methods for constructing the basis functions representation are also indicated. The effectiveness of the developed consistent basis functions DeePC formulations is illustrated on a benchmark nonlinear pendulum state-space model, for both noise free and noisy data.
Graph Neural Networks (GNNs) are a broad class of connectionist models for graph processing. Recent studies have shown that GNNs can approximate any function on graphs, modulo the equivalence relation on graphs defined by the Weisfeiler--Lehman (WL) test. However, these results suffer from some limitations, both because they were derived using the Stone--Weierstrass theorem -- which is existential in nature, -- and because they assume that the target function to be approximated must be continuous. Furthermore, all current results are dedicated to graph classification/regression tasks, where the GNN must produce a single output for the whole graph, while also node classification/regression problems, in which an output is returned for each node, are very common. In this paper, we propose an alternative way to demonstrate the approximation capability of GNNs that overcomes these limitations. Indeed, we show that GNNs are universal approximators in probability for node classification/regression tasks, as they can approximate any measurable function that satisfies the 1--WL equivalence on nodes. The proposed theoretical framework allows the approximation of generic discontinuous target functions and also suggests the GNN architecture that can reach a desired approximation. In addition, we provide a bound on the number of the GNN layers required to achieve the desired degree of approximation, namely $2r-1$, where $r$ is the maximum number of nodes for the graphs in the domain.
When systems use data-based models that are based on machine learning (ML), errors in their results cannot be ruled out. This is particularly critical if it remains unclear to the user how these models arrived at their decisions and if errors can have safety-relevant consequences, as is often the case in the medical field. In such cases, the use of dependable methods to quantify the uncertainty remaining in a result allows the user to make an informed decision about further usage and draw possible conclusions based on a given result. This paper demonstrates the applicability and practical utility of the Uncertainty Wrapper using flow cytometry as an application from the medical field that can benefit from the use of ML models in conjunction with dependable and transparent uncertainty quantification.
Pretrained transformers exhibit the remarkable ability of in-context learning (ICL): they can learn tasks from just a few examples provided in the prompt without updating any weights. This raises a foundational question: can ICL solve fundamentally $\textit{new}$ tasks that are very different from those seen during pretraining? To probe this question, we examine ICL's performance on linear regression while varying the diversity of tasks in the pretraining dataset. We empirically demonstrate a $\textit{task diversity threshold}$ for the emergence of ICL. Below this threshold, the pretrained transformer cannot solve unseen regression tasks, instead behaving like a Bayesian estimator with the $\textit{non-diverse pretraining task distribution}$ as the prior. Beyond this threshold, the transformer significantly outperforms this estimator; its behavior aligns with that of ridge regression, corresponding to a Gaussian prior over $\textit{all tasks}$, including those not seen during pretraining. Thus, when pretrained on data with task diversity greater than the threshold, transformers $\textit{can}$ optimally solve fundamentally new tasks in-context. Importantly, this capability hinges on it deviating from the Bayes optimal estimator with the pretraining distribution as the prior. This study also explores the effect of regularization, model capacity and task structure and underscores, in a concrete example, the critical role of task diversity, alongside data and model scale, in the emergence of ICL. Code is available at //github.com/mansheej/icl-task-diversity.
Building efficient, accurate and generalizable reduced order models of developed turbulence remains a major challenge. This manuscript approaches this problem by developing a hierarchy of parameterized reduced Lagrangian models for turbulent flows, and investigates the effects of enforcing physical structure through Smoothed Particle Hydrodynamics (SPH) versus relying on neural networks (NN)s as universal function approximators. Starting from Neural Network (NN) parameterizations of a Lagrangian acceleration operator, this hierarchy of models gradually incorporates a weakly compressible and parameterized SPH framework, which enforces physical symmetries, such as Galilean, rotational and translational invariances. Within this hierarchy, two new parameterized smoothing kernels are developed in order to increase the flexibility of the learn-able SPH simulators. For each model we experiment with different loss functions which are minimized using gradient based optimization, where efficient computations of gradients are obtained by using Automatic Differentiation (AD) and Sensitivity Analysis (SA). Each model within the hierarchy is trained on two data sets associated with weekly compressible Homogeneous Isotropic Turbulence (HIT): (1) a validation set using weakly compressible SPH; and (2) a high fidelity set from Direct Numerical Simulations (DNS). Numerical evidence shows that encoding more SPH structure improves generalizability to different turbulent Mach numbers and time shifts, and that including the novel parameterized smoothing kernels improves the accuracy of SPH at the resolved scales.