亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When systems use data-based models that are based on machine learning (ML), errors in their results cannot be ruled out. This is particularly critical if it remains unclear to the user how these models arrived at their decisions and if errors can have safety-relevant consequences, as is often the case in the medical field. In such cases, the use of dependable methods to quantify the uncertainty remaining in a result allows the user to make an informed decision about further usage and draw possible conclusions based on a given result. This paper demonstrates the applicability and practical utility of the Uncertainty Wrapper using flow cytometry as an application from the medical field that can benefit from the use of ML models in conjunction with dependable and transparent uncertainty quantification.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 估計/估計量 · DATE · Machine Learning · Analysis ·
2024 年 1 月 2 日

We introduce new approaches for forecasting IBNR (Incurred But Not Reported) frequencies by leveraging individual claims data, which includes accident date, reporting delay, and possibly additional features for every reported claim. A key element of our proposal involves computing development factors, which may be influenced by both the accident date and other features. These development factors serve as the basis for predictions. While we assume close to continuous observations of accident date and reporting delay, the development factors can be expressed at any level of granularity, such as months, quarters, or year and predictions across different granularity levels exhibit coherence. The calculation of development factors relies on the estimation of a hazard function in reverse development time, and we present three distinct methods for estimating this function: the Cox proportional hazard model, a feed-forward neural network, and xgboost (eXtreme gradient boosting). In all three cases, estimation is based on the same partial likelihood that accommodates left truncation and ties in the data. While the first case is a semi-parametric model that assumes in parts a log linear structure, the two machine learning approaches only assume that the baseline and the other factors are multiplicatively separable. Through an extensive simulation study and real-world data application, our approach demonstrates promising results. This paper comes with an accompanying R-package, $\texttt{ReSurv}$, which can be accessed at \url{//github.com/edhofman/ReSurv}

Bayesian model-averaged hypothesis testing is an important technique in regression because it addresses the problem that the evidence one variable directly affects an outcome often depends on which other variables are included in the model. This problem is caused by confounding and mediation, and is pervasive in big data settings with thousands of variables. However, model-averaging is under-utilized in fields, like epidemiology, where classical statistical approaches dominate. Here we show that simultaneous Bayesian and frequentist model-averaged hypothesis testing is possible in large samples, for a family of priors. We show that Bayesian model-averaged regression is a closed testing procedure, and use the theory of regular variation to derive interchangeable posterior odds and $p$-values that jointly control the Bayesian false discovery rate (FDR), the frequentist type I error rate, and the frequentist familywise error rate (FWER). These results arise from an asymptotic chi-squared distribution for the model-averaged deviance, under the null hypothesis. We call the approach 'Doublethink'. In a related manuscript (Arning, Fryer and Wilson, 2024), we apply it to discovering direct risk factors for COVID-19 hospitalization in UK Biobank, and we discuss its broader implications for bridging the differences between Bayesian and frequentist hypothesis testing.

Bayesian parameter inference is useful to improve Li-ion battery diagnostics and can help formulate battery aging models. However, it is computationally intensive and cannot be easily repeated for multiple cycles, multiple operating conditions, or multiple replicate cells. To reduce the computational cost of Bayesian calibration, numerical solvers for physics-based models can be replaced with faster surrogates. A physics-informed neural network (PINN) is developed as a surrogate for the pseudo-2D (P2D) battery model calibration. For the P2D surrogate, additional training regularization was needed as compared to the PINN single-particle model (SPM) developed in Part I. Both the PINN SPM and P2D surrogate models are exercised for parameter inference and compared to data obtained from a direct numerical solution of the governing equations. A parameter inference study highlights the ability to use these PINNs to calibrate scaling parameters for the cathode Li diffusion and the anode exchange current density. By realizing computational speed-ups of 2250x for the P2D model, as compared to using standard integrating methods, the PINN surrogates enable rapid state-of-health diagnostics. In the low-data availability scenario, the testing error was estimated to 2mV for the SPM surrogate and 10mV for the P2D surrogate which could be mitigated with additional data.

A new loss function for speaker recognition with deep neural network is proposed, based on Jeffreys Divergence. Adding this divergence to the cross-entropy loss function allows to maximize the target value of the output distribution while smoothing the non-target values. This objective function provides highly discriminative features. Beyond this effect, we propose a theoretical justification of its effectiveness and try to understand how this loss function affects the model, in particular the impact on dataset types (i.e. in-domain or out-of-domain w.r.t the training corpus). Our experiments show that Jeffreys loss consistently outperforms the state-of-the-art for speaker recognition, especially on out-of-domain data, and helps limit false alarms.

A general class of hybrid models has been introduced recently, gathering the advantages multiscale descriptions. Concerning biological applications, the particular coupled structure fits to collective cell migrations and pattern formation scenarios. In this context, cells are modelled as discrete entities and their dynamics is given by ODEs, while the chemical signal influencing the motion is considered as a continuous signal which solves a diffusive equation. From the analytical point of view, this class of model has been proved to have a mean-field limit in the Wasserstein distance towards a system given by the coupling of a Vlasov-type equation with the chemoattractant equation. Moreover, a pressureless nonlocal Euler-type system has been derived for these models, rigorously equivalent to the Vlasov one for monokinetic initial data. In the present paper, we present a numerical study of the solutions to the Vlasov and Euler systems, exploring general settings for inital data, far from the monokinetic ones.

Large machine learning models are revolutionary technologies of artificial intelligence whose bottlenecks include huge computational expenses, power, and time used both in the pre-training and fine-tuning process. In this work, we show that fault-tolerant quantum computing could possibly provide provably efficient resolutions for generic (stochastic) gradient descent algorithms, scaling as O(T^2 polylog(n)), where n is the size of the models and T is the number of iterations in the training, as long as the models are both sufficiently dissipative and sparse, with small learning rates. Based on earlier efficient quantum algorithms for dissipative differential equations, we find and prove that similar algorithms work for (stochastic) gradient descent, the primary algorithm for machine learning. In practice, we benchmark instances of large machine learning models from 7 million to 103 million parameters. We find that, in the context of sparse training, a quantum enhancement is possible at the early stage of learning after model pruning, motivating a sparse parameter download and re-upload scheme. Our work shows solidly that fault-tolerant quantum algorithms could potentially contribute to most state-of-the-art, large-scale machine-learning problems.

Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.

Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司