亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While many researchers adopt a sharding approach to design scaling blockchains, few works have studied the transaction placement problem incurred by sharding protocols. The widely-used hashing placement algorithm renders an overwhelming portion of transactions as cross-shard. In this paper, we analyze the high cost of cross-shard transactions and reveal that most Bitcoin transactions have simple dependencies and can become single-shard under a placement algorithm taking transaction dependencies into account. In addition, we perform a case study of OptChain, which is the state-of-the-art transaction placement algorithm for sharded blockchains, and find a shortcoming of it. A simple fix is proposed, and our evaluation results demonstrate that the proposed fix effectively helps OptChain overcome the shortcoming and significantly improve the system performance under a special workload. The authors of OptChain made some revisions to the algorithm description after noticing our work. Their updated algorithm does not exhibit the shortcoming under the workloads employed by this paper.

相關內容

Transaction fee mechanism (TFM) is an essential component of a blockchain protocol. However, a systematic evaluation of the real-world impact of TFMs is still absent. Using rich data from the Ethereum blockchain, mempool, and exchanges, we study the effect of EIP-1559, one of the first deployed TFMs that depart from the traditional first-price auction paradigm. We conduct a rigorous and comprehensive empirical study to examine its causal effect on blockchain transaction fee dynamics, transaction waiting time and security. Our results show that EIP-1559 improves the user experience by making fee estimation easier, mitigating intra-block difference of gas price paid, and reducing users' waiting times. However, EIP-1559 has only a small effect on gas fee levels and consensus security. In addition, we found that when Ether's price is more volatile, the waiting time is significantly higher. We also verify that a larger block size increases the presence of siblings. These findings suggest new directions for improving TFM.

Manufacturing companies face challenges when it comes to quickly adapting their production control to fluctuating demands or changing requirements. Control approaches that encapsulate production functions as services have shown to be promising in order to increase the flexibility of Cyber-Physical Production Systems. But an existing challenge of such approaches is finding a production plan based on provided functionalities for a demanded product, especially when there is no direct (i.e., syntactic) match between demanded and provided functions. While there is a variety of approaches to production planning, flexible production poses specific requirements that are not covered by existing research. In this contribution, we first capture these requirements for flexible production environments. Afterwards, an overview of current Artificial Intelligence approaches that can be utilized in order to overcome the aforementioned challenges is given. For this purpose, we focus on planning algorithms, but also consider models of production systems that can act as inputs to these algorithms. Approaches from both symbolic AI planning as well as approaches based on Machine Learning are discussed and eventually compared against the requirements. Based on this comparison, a research agenda is derived.

Deep neural networks (DNNs) have demonstrated superior performance over classical machine learning to support many features in safety-critical systems. Although DNNs are now widely used in such systems (e.g., self driving cars), there is limited progress regarding automated support for functional safety analysis in DNN-based systems. For example, the identification of root causes of errors, to enable both risk analysis and DNN retraining, remains an open problem. In this paper, we propose SAFE, a black-box approach to automatically characterize the root causes of DNN errors. SAFE relies on a transfer learning model pre-trained on ImageNet to extract the features from error-inducing images. It then applies a density-based clustering algorithm to detect arbitrary shaped clusters of images modeling plausible causes of error. Last, clusters are used to effectively retrain and improve the DNN. The black-box nature of SAFE is motivated by our objective not to require changes or even access to the DNN internals to facilitate adoption. Experimental results show the superior ability of SAFE in identifying different root causes of DNN errors based on case studies in the automotive domain. It also yields significant improvements in DNN accuracy after retraining, while saving significant execution time and memory when compared to alternatives.

Vehicular networks promise features such as traffic management, route scheduling, data exchange, entertainment, and much more. With any large-scale technological integration comes the challenge of providing security. Blockchain technology has been a popular choice of many studies for making the vehicular network more secure. Its characteristics meet some of the essential security requirements such as decentralization, transparency, tamper-proof nature, and public audit. This study catalogues some of the notable efforts in this direction over the last few years. We analyze around 75 blockchain-based security schemes for vehicular networks from an application, security, and blockchain perspective. The application perspective focuses on various applications which use secure blockchain-based vehicular networks such as transportation, parking, data sharing/ trading, and resource sharing. The security perspective focuses on security requirements and attacks. The blockchain perspective focuses on blockchain platforms, blockchain types, and consensus mechanisms used in blockchain implementation. We also compile the popular simulation tools used for simulating blockchain and for simulating vehicular networks. Additionally, to give the readers a broader perspective of the research area, we discuss the role of various state-of-the-art emerging technologies in blockchain-based vehicular networks. Lastly, we summarize the survey by listing out some common challenges and the future research directions in this field.

It is a critical matter for a blockchain system whether a Byzantine fault tolerance (BFT) can be guaranteed during a consensus process. Can connected vehicles (CVs) achieve the BFT consensus when the vehicles keep mobile? This paper seeks an answer to this fundamental question. It focuses on characterizing the impact of mobility on the performance of a BFT consensus among CVs.

The current electricity networks were not initially designed for the high integration of variable generation technologies. They suffer significant losses due to the combustion of fossil fuels, the long-distance transmission, and distribution of the power to the network. Recently, \emph{prosumers}, both consumers and producers, emerge with the increasing affordability to invest in domestic solar systems. Prosumers may trade within their communities to better manage their demand and supply as well as providing social and economic benefits. In this paper, we explore the use of Blockchain technologies and auction mechanisms to facilitate autonomous peer-to-peer energy trading within microgrids. We design two frameworks that utilize the smart contract functionality in Ethereum and employ the continuous double auction and uniform-price double-sided auction mechanisms, respectively. We validate our design by conducting A/B tests to compare the performance of different frameworks on a real-world dataset. The key characteristics of the two frameworks and several cost analyses are presented for comparison. Our results demonstrate that a P2P trading platform that integrates the blockchain technologies and agent-based systems is promising to complement the current centralized energy grid. We also identify a number of limitations, alternative solutions, and directions for future work.

In warehouses, order picking is known to be the most labor-intensive and costly task in which the employees account for a large part of the warehouse performance. Hence, many approaches exist, that optimize the order picking process based on diverse economic criteria. However, most of these approaches focus on a single economic objective at once and disregard ergonomic criteria in their optimization. Further, the influence of the placement of the items to be picked is underestimated and accordingly, too little attention is paid to the interdependence of these two problems. In this work, we aim at optimizing the storage assignment and the order picking problem within mezzanine warehouse with regards to their reciprocal influence. We propose a customized version of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for optimizing the storage assignment problem as well as an Ant Colony Optimization (ACO) algorithm for optimizing the order picking problem. Both algorithms incorporate multiple economic and ergonomic constraints simultaneously. Furthermore, the algorithms incorporate knowledge about the interdependence between both problems, aiming to improve the overall warehouse performance. Our evaluation results show that our proposed algorithms return better storage assignments and order pick routes compared to commonly used techniques for the following quality indicators for comparing Pareto fronts: Coverage, Generational Distance, Euclidian Distance, Pareto Front Size, and Inverted Generational Distance. Additionally, the evaluation regarding the interaction of both algorithms shows a better performance when combining both proposed algorithms.

One of the key steps in Neural Architecture Search (NAS) is to estimate the performance of candidate architectures. Existing methods either directly use the validation performance or learn a predictor to estimate the performance. However, these methods can be either computationally expensive or very inaccurate, which may severely affect the search efficiency and performance. Moreover, as it is very difficult to annotate architectures with accurate performance on specific tasks, learning a promising performance predictor is often non-trivial due to the lack of labeled data. In this paper, we argue that it may not be necessary to estimate the absolute performance for NAS. On the contrary, we may need only to understand whether an architecture is better than a baseline one. However, how to exploit this comparison information as the reward and how to well use the limited labeled data remains two great challenges. In this paper, we propose a novel Contrastive Neural Architecture Search (CTNAS) method which performs architecture search by taking the comparison results between architectures as the reward. Specifically, we design and learn a Neural Architecture Comparator (NAC) to compute the probability of candidate architectures being better than a baseline one. Moreover, we present a baseline updating scheme to improve the baseline iteratively in a curriculum learning manner. More critically, we theoretically show that learning NAC is equivalent to optimizing the ranking over architectures. Extensive experiments in three search spaces demonstrate the superiority of our CTNAS over existing methods.

The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.

This paper reports on modern approaches in Information Extraction (IE) and its two main sub-tasks of Named Entity Recognition (NER) and Relation Extraction (RE). Basic concepts and the most recent approaches in this area are reviewed, which mainly include Machine Learning (ML) based approaches and the more recent trend to Deep Learning (DL) based methods.

北京阿比特科技有限公司