亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is a critical matter for a blockchain system whether a Byzantine fault tolerance (BFT) can be guaranteed during a consensus process. Can connected vehicles (CVs) achieve the BFT consensus when the vehicles keep mobile? This paper seeks an answer to this fundamental question. It focuses on characterizing the impact of mobility on the performance of a BFT consensus among CVs.

相關內容

 區塊鏈(Blockchain)是由節點參與的分布式數據庫系統,它的特點是不可更改,不可偽造,也可以將其理解為賬簿系統(ledger)。它是比特幣的一個重要概念,完整比特幣區塊鏈的副本,記錄了其代幣(token)的每一筆交易。通過這些信息,我們可以找到每一個地址,在歷史上任何一點所擁有的價值。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

The Internet of Things (IoT) is one of the emerging technologies that has grabbed the attention of researchers from academia and industry. The idea behind Internet of things is the interconnection of internet enabled things or devices to each other and to humans, to achieve some common goals. In near future IoT is expected to be seamlessly integrated into our environment and human will be wholly solely dependent on this technology for comfort and easy life style. Any security compromise of the system will directly affect human life. Therefore security and privacy of this technology is foremost important issue to resolve. In this paper we present a thorough study of security problems in IoT and classify possible cyberattacks on each layer of IoT architecture. We also discuss challenges to traditional security solutions such as cryptographic solutions, authentication mechanisms and key management in IoT. Device authentication and access controls is an essential area of IoT security, which is not surveyed so far. We spent our efforts to bring the state of the art device authentication and access control techniques on a single paper.

Quantum communications is a promising technology that will play a fundamental role in the design of future networks. In fact, significant efforts are being dedicated by both the quantum physics and the classical communications communities on developing new architectures, solutions, and practical implementations of quantum communication networks (QCNs). Although these efforts led to various advances in today's technologies, there still exists a non-trivial gap between the research efforts of the two communities on designing and optimizing the QCN performance. For instance, most prior works by the classical communications community ignore important quantum physics-based constraints when designing QCNs. For example, many works on entanglement distribution do not account for the decoherence of qubits inside quantum memories and, thus, their designs become impractical since they assume an infinite quantum states' lifetime. In this paper, we introduce a novel framework, dubbed physics-informed QCNs, for designing and analyzing the performance of QCNs, by relying on the quantum physics principles that underly the different QCN components. The need of the proposed approach is then assessed and its fundamental role in designing practical QCNs is analyzed across various open research areas. Moreover, we identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies to enhance their performance. Finally, we analyze multiple pressing challenges and open research directions in QCNs that must be treated using a physics-informed approach to lead practically viable results. Ultimately, this work attempts to bridge the gap between the classical communications and the quantum physics communities in the area of QCNs to foster the development of future communication networks (6G and beyond, and the quantum Internet).

The blockchain-based smart contract lacks privacy since the contract state and instruction code are exposed to the public. Combining smart-contract execution with Trusted Execution Environments (TEEs) provides an efficient solution, called TEE-assisted smart contracts, for protecting the confidentiality of contract states. However, the combination approaches are varied, and a systematic study is absent. Newly released systems may fail to draw upon the experience learned from existing protocols, such as repeating known design mistakes or applying TEE technology in insecure ways. In this paper, we first investigate and categorize the existing systems into two types: the layer-one solution and layer-two solution. Then, we establish an analysis framework to capture their common lights, covering the desired properties (for contract services), threat models, and security considerations (for underlying systems). Based on our taxonomy, we identify their ideal functionalities and uncover the fundamental flaws and reasons for the challenges in each specification design. We believe that this work would provide a guide for the development of TEE-assisted smart contracts, as well as a framework to evaluate future TEE-assisted confidential contract systems.

Videos are accessible media for analyzing sports postures and providing feedback to athletes. Existing video-based coaching systems often present feedback on the correctness of poses by augmenting videos with visual markers either manually by a coach or automatically by computing key parameters from poses. However, previewing and augmenting videos limit the analysis and visualization of human poses due to the fixed viewpoints, which confine the observation of captured human movements and cause ambiguity in the augmented feedback. Besides, existing sport-specific systems with embedded bespoke pose attributes can hardly generalize to new attributes; directly overlaying two poses might not clearly visualize the key differences that viewers would like to pursue. To address these issues, we analyze and visualize human pose data with customizable viewpoints and attributes in the context of common biomechanics of running poses, such as joint angles and step distances. Based on existing literature and a formative study, we have designed and implemented a system, VCoach, to provide feedback on running poses for amateurs. VCoach provides automatic low-level comparisons of the running poses between a novice and an expert, and visualizes the pose differences as part-based 3D animations on a human model. Meanwhile, it retains the users' controllability and customizability in high-level functionalities, such as navigating the viewpoint for previewing feedback and defining their own pose attributes through our interface. We conduct a user study to verify our design components and conduct expert interviews to evaluate the usefulness of the system.

The fundamental tradeoff between transaction per second (TPS) and security in blockchain systems persists despite numerous prior attempts to boost TPS. To increase TPS without compromising security, we propose a bodyless block propagation (BBP) scheme for which the block body is not validated and transmitted during the block propagation process. Rather, the nodes in the blockchain network anticipate the transactions and their ordering in the next upcoming block so that these transactions can be pre-executed and pre-validated before the birth of the block. It is critical, however, all nodes have a consensus on the transaction content of the next block. This paper puts forth a transaction selection, ordering, and synchronization algorithm to drive the nodes to reach such a consensus. Yet, the coinbase address of the miner of the next block cannot be anticipated, and therefore transactions that depend on the coinbase address cannot be pre-executed and pre-validated. This paper further puts forth an algorithm to deal with such unresolvable transactions for an overall consistent and TPS-efficient scheme. With our scheme, most transactions do not need to be validated and transmitted during block propagation, ridding the dependence of propagation time on the number of transactions in the block, and making the system fully TPS scalable. Experimental results show that our protocol can reduce propagation time by 4x with respect to the current Ethereum blockchain, and its TPS performance is limited by the node hardware performance rather than block propagation.

The problem of Byzantine consensus has been key to designing secure distributed systems. However, it is particularly difficult, mainly due to the presence of Byzantine processes that act arbitrarily and the unknown message delays in general networks. Although it is well known that both safety and liveness are at risk as soon as $n/3$ Byzantine processes fail, very few works attempted to characterize precisely the faults that produce safety violations from the faults that produce termination violations. In this paper, we present a new lower bound on the solvability of the consensus problem by distinguishing deceitful faults violating safety and benign faults violating termination from the more general Byzantine faults, in what we call the Byzantine-deceitful-benign fault model. We show that one cannot solve consensus if $n\leq 3t+d+2q$ with $t$ Byzantine processes, $d$ deceitful processes, and $q$ benign processes. In addition, we show that this bound is tight by presenting the Basilic class of consensus protocols that solve consensus when $n > 3t+d+2q$. These protocols differ in the number of processes from which they wait to receive messages before progressing. Each of these protocols is thus better suited for some applications depending on the predominance of benign or deceitful faults. Finally, we study the fault tolerance of the Basilic class of consensus protocols in the context of blockchains that need to solve the weaker problem of eventual consensus. We demonstrate that Basilic solves this problem with only $n > 2t+d+q$, hence demonstrating how it can strengthen blockchain security.

The shift towards end-to-end deep learning has brought unprecedented advances in many areas of computer vision. However, deep neural networks are trained on images with resolutions that rarely exceed $1,000 \times 1,000$ pixels. The growing use of scanners that create images with extremely high resolutions (average can be $100,000 \times 100,000$ pixels) thereby presents novel challenges to the field. Most of the published methods preprocess high-resolution images into a set of smaller patches, imposing an a priori belief on the best properties of the extracted patches (magnification, field of view, location, etc.). Herein, we introduce Magnifying Networks (MagNets) as an alternative deep learning solution for gigapixel image analysis that does not rely on a preprocessing stage nor requires the processing of billions of pixels. MagNets can learn to dynamically retrieve any part of a gigapixel image, at any magnification level and field of view, in an end-to-end fashion with minimal ground truth (a single global, slide-level label). Our results on the publicly available Camelyon16 and Camelyon17 datasets corroborate to the effectiveness and efficiency of MagNets and the proposed optimization framework for whole slide image classification. Importantly, MagNets process far less patches from each slide than any of the existing approaches ($10$ to $300$ times less).

With the rapid growth of new technological paradigms such as the Internet of Things (IoT), it opens new doors for many applications in the modern era for the betterment of human life. One of the recent applications of the IoT is the Internet of Vehicles (IoV) which helps to see unprecedented growth of connected vehicles on the roads. The IoV is gaining attention due to enhancing traffic safety and providing low route information. One of the most important and major requirements of the IoV is preserving security and privacy under strict latency. Moreover, vehicles are required to be authenticated frequently and fast considering limited bandwidth, high mobility, and density of the vehicles. To address the security vulnerabilities and data integrity, an ultralight authentication scheme has been proposed in this article. Physical Unclonable Function (PUF) and XOR function are used to authenticate both server and vehicle in two message flow which makes the proposed scheme ultralight, and less computation is required. The proposed Easy-Sec can authenticate vehicles maintaining low latency and resisting known security threats. Furthermore, the proposed Easy-Sec needs low overhead so that it does not increase the burden of the IoV network. Computational ( around 4 ms) and Communication (32 bytes) overhead shows the feasibility, efficiency, and also security features are depicted using formal analysis, Burrows, Abadi, and Needham (BAN) logic, and informal analysis to show the robustness of the proposed mechanisms against security threats.

We demonstrate that merely analog transmissions and match filtering can realize the function of an edge server in federated learning (FL). Therefore, a network with massively distributed user equipments (UEs) can achieve large-scale FL without an edge server. We also develop a training algorithm that allows UEs to continuously perform local computing without being interrupted by the global parameter uploading, which exploits the full potential of UEs' processing power. We derive convergence rates for the proposed schemes to quantify their training efficiency. The analyses reveal that when the interference obeys a Gaussian distribution, the proposed algorithm retrieves the convergence rate of a server-based FL. But if the interference distribution is heavy-tailed, then the heavier the tail, the slower the algorithm converges. Nonetheless, the system run time can be largely reduced by enabling computation in parallel with communication, whereas the gain is particularly pronounced when communication latency is high. These findings are corroborated via excessive simulations.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司