亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The fundamental tradeoff between transaction per second (TPS) and security in blockchain systems persists despite numerous prior attempts to boost TPS. To increase TPS without compromising security, we propose a bodyless block propagation (BBP) scheme for which the block body is not validated and transmitted during the block propagation process. Rather, the nodes in the blockchain network anticipate the transactions and their ordering in the next upcoming block so that these transactions can be pre-executed and pre-validated before the birth of the block. It is critical, however, all nodes have a consensus on the transaction content of the next block. This paper puts forth a transaction selection, ordering, and synchronization algorithm to drive the nodes to reach such a consensus. Yet, the coinbase address of the miner of the next block cannot be anticipated, and therefore transactions that depend on the coinbase address cannot be pre-executed and pre-validated. This paper further puts forth an algorithm to deal with such unresolvable transactions for an overall consistent and TPS-efficient scheme. With our scheme, most transactions do not need to be validated and transmitted during block propagation, ridding the dependence of propagation time on the number of transactions in the block, and making the system fully TPS scalable. Experimental results show that our protocol can reduce propagation time by 4x with respect to the current Ethereum blockchain, and its TPS performance is limited by the node hardware performance rather than block propagation.

相關內容

This paper examines the stability and distributed stabilization of signed multi-agent networks. Here, positive semidefiniteness is not inherent for signed Laplacians, which renders the stability and consensus of this category of networks intricate. First, we examine the stability of signed networks by introducing a novel graph-theoretic objective negative cut set, which implies that manipulating negative edge weights cannot change a unstable network into a stable one. Then, inspired by the diagonal dominance and stability of matrices, a local state damping mechanism is introduced using self-loop compensation. The self-loop compensation is only active for those agents who are incident to negative edges and can stabilize signed networks in a fully distributed manner. Quantitative connections between self-loop compensation and the stability of the compensated signed network are established for a tradeoff between compensation efforts and network stability. Necessary and/or sufficient conditions for predictable cluster consensus of compensated signed networks are provided. The optimality of self-loop compensation is discussed. Furthermore, we extend our results to directed signed networks where the symmetry of signed Laplacian is not free. The correlation between the stability of the compensated dynamics obtained by self-loop compensation and eventually positivity is further discussed. Novel insights into the stability of multi-agent systems on signed networks in terms of self-loop compensation are offered. Simulation examples are provided to demonstrate the theoretical results.

Over the past decade, machine learning revolutionized vision-based quality assessment for which convolutional neural networks (CNNs) have now become the standard. In this paper, we consider a potential next step in this development and describe a quanvolutional neural network (QNN) algorithm that efficiently maps classical image data to quantum states and allows for reliable image analysis. We practically demonstrate how to leverage quantum devices in computer vision and how to introduce quantum convolutions into classical CNNs. Dealing with a real world use case in industrial quality control, we implement our hybrid QNN model within the PennyLane framework and empirically observe it to achieve better predictions using much fewer training data than classical CNNs. In other words, we empirically observe a genuine quantum advantage for an industrial application where the advantage is due to superior data encoding.

In experiments that study social phenomena, such as peer influence or herd immunity, the treatment of one unit may influence the outcomes of others. Such "interference between units" violates traditional approaches for causal inference, so that additional assumptions are often imposed to model or limit the underlying social mechanism. For binary outcomes, we propose an approach that does not require such assumptions, allowing for interference that is both unmodeled and strong, with confidence intervals derived using only the randomization of treatment. However, the estimates will have wider confidence intervals and weaker causal implications than those attainable under stronger assumptions. The approach allows for the usage of regression, matching, or weighting, as may best fit the application at hand. Inference is done by bounding the distribution of the estimation error over all possible values of the unknown counterfactual, using an integer program. Examples are shown using using a vaccination trial and two experiments investigating social influence.

In this work, we propose a novel safe and scalable decentralized solution for multi-agent control in the presence of stochastic disturbances. Safety is mathematically encoded using stochastic control barrier functions and safe controls are computed by solving quadratic programs. Decentralization is achieved by augmenting to each agent's optimization variables, copy variables, for its neighbors. This allows us to decouple the centralized multi-agent optimization problem. However, to ensure safety, neighboring agents must agree on "what is safe for both of us" and this creates a need for consensus. To enable safe consensus solutions, we incorporate an ADMM-based approach. Specifically, we propose a Merged CADMM-OSQP implicit neural network layer, that solves a mini-batch of both, local quadratic programs as well as the overall consensus problem, as a single optimization problem. This layer is embedded within a Deep FBSDEs network architecture at every time step, to facilitate end-to-end differentiable, safe and decentralized stochastic optimal control. The efficacy of the proposed approach is demonstrated on several challenging multi-robot tasks in simulation. By imposing requirements on safety specified by collision avoidance constraints, the safe operation of all agents is ensured during the entire training process. We also demonstrate superior scalability in terms of computational and memory savings as compared to a centralized approach.

Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.

Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.

In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.

There has been appreciable progress in unsupervised network representation learning (UNRL) approaches over graphs recently with flexible random-walk approaches, new optimization objectives and deep architectures. However, there is no common ground for systematic comparison of embeddings to understand their behavior for different graphs and tasks. In this paper we theoretically group different approaches under a unifying framework and empirically investigate the effectiveness of different network representation methods. In particular, we argue that most of the UNRL approaches either explicitly or implicit model and exploit context information of a node. Consequently, we propose a framework that casts a variety of approaches -- random walk based, matrix factorization and deep learning based -- into a unified context-based optimization function. We systematically group the methods based on their similarities and differences. We study the differences among these methods in detail which we later use to explain their performance differences (on downstream tasks). We conduct a large-scale empirical study considering 9 popular and recent UNRL techniques and 11 real-world datasets with varying structural properties and two common tasks -- node classification and link prediction. We find that there is no single method that is a clear winner and that the choice of a suitable method is dictated by certain properties of the embedding methods, task and structural properties of the underlying graph. In addition we also report the common pitfalls in evaluation of UNRL methods and come up with suggestions for experimental design and interpretation of results.

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.

北京阿比特科技有限公司