亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an algorithm for learning operators between Banach spaces, based on the use of Leray-Schauder mappings to learn a finite-dimensional approximation of compact subspaces. We show that the resulting method is a universal approximator of (possibly nonlinear) operators. We demonstrate the efficiency of the approach on two benchmark datasets showing it achieves results comparable to state of the art models.

相關內容

We propose a scaling law hypothesis for multimodal models processing text, audio, images, and video within a shared token and embedding space. Our framework predicts model performance based on modality-specific compression and tokenization efficiency, extending established scaling laws from text-based decoder models to mixed-modality systems. We explore whether leveraging more training data in multiple modalities can reduce the size of the multimodal model, enabling efficient deployment on resource-constrained devices.

We consider the approximation of functions by 2-layer neural networks with a small number of hidden weights based on the squared loss and small datasets. Due to the highly non-convex energy landscape, gradient-based training often suffers from local minima. As a remedy, we initialize the hidden weights with samples from a learned proposal distribution, which we parameterize as a deep generative model. To train this model, we exploit the fact that with fixed hidden weights, the optimal output weights solve a linear equation. After learning the generative model, we refine the sampled weights with a gradient-based post-processing in the latent space. Here, we also include a regularization scheme to counteract potential noise. Finally, we demonstrate the effectiveness of our approach by numerical examples.

Oblivious dimension reduction, \`{a} la the Johnson-Lindenstrauss (JL) Lemma, is a fundamental approach for processing high-dimensional data. We study this approach for Uniform Facility Location (UFL) on a Euclidean input $X\subset\mathbb{R}^d$, where facilities can lie in the ambient space (not restricted to $X$). Our main result is that target dimension $m=\tilde{O}(\epsilon^{-2}\mathrm{ddim})$ suffices to $(1+\epsilon)$-approximate the optimal value of UFL on inputs whose doubling dimension is bounded by $\mathrm{ddim}$. It significantly improves over previous results, that could only achieve $O(1)$-approximation [Narayanan, Silwal, Indyk, and Zamir, ICML 2021] or dimension $m=O(\epsilon^{-2}\log n)$ for $n=|X|$, which follows from [Makarychev, Makarychev, and Razenshteyn, STOC 2019]. Our oblivious dimension reduction has immediate implications to streaming and offline algorithms, by employing known algorithms for low dimension. In dynamic geometric streams, it implies a $(1+\epsilon)$-approximation algorithm that uses $O(\epsilon^{-1}\log n)^{\tilde{O}(\mathrm{ddim}/\epsilon^{2})}$ bits of space, which is the first streaming algorithm for UFL to utilize the doubling dimension. In the offline setting, it implies a $(1+\epsilon)$-approximation algorithm, which we further refine to run in time $( (1/\epsilon)^{\tilde{O}(\mathrm{ddim})} d + 2^{(1/\epsilon)^{\tilde{O}(\mathrm{ddim})}}) \cdot \tilde{O}(n) $. Prior work has a similar running time but requires some restriction on the facilities [Cohen-Addad, Feldmann and Saulpic, JACM 2021]. Our main technical contribution is a fast procedure to decompose an input $X$ into several $k$-median instances for small $k$. This decomposition is inspired by, but has several significant differences from [Czumaj, Lammersen, Monemizadeh and Sohler, SODA 2013], and is key to both our dimension reduction and our PTAS.

We introduce average-distortion sketching for metric spaces. As in (worst-case) sketching, these algorithms compress points in a metric space while approximately recovering pairwise distances. The novelty is studying average-distortion: for any fixed (yet, arbitrary) distribution $\mu$ over the metric, the sketch should not over-estimate distances, and it should (approximately) preserve the average distance with respect to draws from $\mu$. The notion generalizes average-distortion embeddings into $\ell_1$ [Rabinovich '03, Kush-Nikolov-Tang '21] as well as data-dependent locality-sensitive hashing [Andoni-Razenshteyn '15, Andoni-Naor-Nikolov-et-al. '18], which have been recently studied in the context of nearest neighbor search. $\bullet$ For all $p \in [1, \infty)$ and any $c$ larger than a fixed constant, we give an average-distortion sketch for $([\Delta]^d, \ell_p)$ with approximation $c$ and bit-complexity $\text{poly}(cp \cdot 2^{p/c} \cdot \log(d\Delta))$, which is provably impossible in (worst-case) sketching. $\bullet$ As an application, we improve on the approximation of sublinear-time data structures for nearest neighbor search over $\ell_p$ (for large $p > 2$). The prior best approximation was $O(p)$ [Andoni-Naor-Nikolov-et.al '18, Kush-Nikolov-Tang '21], and we show it can be any $c$ larger than a fixed constant (irrespective of $p$) by using $n^{\text{poly}(cp \cdot 2^{p/c})}$ space. We give some evidence that $2^{\Omega(p/c)}$ space may be necessary by giving a lower bound on average-distortion sketches which produce a certain probabilistic certificate of farness (which our sketches crucially rely on).

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Representation learning on a knowledge graph (KG) is to embed entities and relations of a KG into low-dimensional continuous vector spaces. Early KG embedding methods only pay attention to structured information encoded in triples, which would cause limited performance due to the structure sparseness of KGs. Some recent attempts consider paths information to expand the structure of KGs but lack explainability in the process of obtaining the path representations. In this paper, we propose a novel Rule and Path-based Joint Embedding (RPJE) scheme, which takes full advantage of the explainability and accuracy of logic rules, the generalization of KG embedding as well as the supplementary semantic structure of paths. Specifically, logic rules of different lengths (the number of relations in rule body) in the form of Horn clauses are first mined from the KG and elaborately encoded for representation learning. Then, the rules of length 2 are applied to compose paths accurately while the rules of length 1 are explicitly employed to create semantic associations among relations and constrain relation embeddings. Besides, the confidence level of each rule is also considered in optimization to guarantee the availability of applying the rule to representation learning. Extensive experimental results illustrate that RPJE outperforms other state-of-the-art baselines on KG completion task, which also demonstrate the superiority of utilizing logic rules as well as paths for improving the accuracy and explainability of representation learning.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

北京阿比特科技有限公司