亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Routine inspections for critical infrastructures such as bridges are required in most jurisdictions worldwide. Such routine inspections are largely visual in nature, which are qualitative, subjective, and not repeatable. Although robotic infrastructure inspections address such limitations, they cannot replace the superior ability of experts to make decisions in complex situations, thus making human-robot interaction systems a promising technology. This study presents a novel gaze-based human-robot interaction system, designed to augment the visual inspection performance through mixed reality. Through holograms from a mixed reality device, gaze can be utilized effectively to estimate the properties of the defect in real-time. Additionally, inspectors can monitor the inspection progress online, which enhances the speed of the entire inspection process. Limited controlled experiments demonstrate its effectiveness across various users and defect types. To our knowledge, this is the first demonstration of the real-time application of eye gaze in civil infrastructure inspections.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Networking · · Attention · MoDELS ·
2024 年 4 月 25 日

Representation-based Siamese networks have risen to popularity in lightweight text matching due to their low deployment and inference costs. While word-level attention mechanisms have been implemented within Siamese networks to improve performance, we propose Feature Attention (FA), a novel downstream block designed to enrich the modeling of dependencies among embedding features. Employing "squeeze-and-excitation" techniques, the FA block dynamically adjusts the emphasis on individual features, enabling the network to concentrate more on features that significantly contribute to the final classification. Building upon FA, we introduce a dynamic "selection" mechanism called Selective Feature Attention (SFA), which leverages a stacked BiGRU Inception structure. The SFA block facilitates multi-scale semantic extraction by traversing different stacked BiGRU layers, encouraging the network to selectively concentrate on semantic information and embedding features across varying levels of abstraction. Both the FA and SFA blocks offer a seamless integration capability with various Siamese networks, showcasing a plug-and-play characteristic. Experimental evaluations conducted across diverse text matching baselines and benchmarks underscore the indispensability of modeling feature attention and the superiority of the "selection" mechanism.

Text-to-image diffusion models have shown powerful ability on conditional image synthesis. With large-scale vision-language pre-training, diffusion models are able to generate high-quality images with rich texture and reasonable structure under different text prompts. However, it is an open problem to adapt the pre-trained diffusion model for visual perception. In this paper, we propose an implicit and explicit language guidance framework for diffusion-based perception, named IEDP. Our IEDP comprises an implicit language guidance branch and an explicit language guidance branch. The implicit branch employs frozen CLIP image encoder to directly generate implicit text embeddings that are fed to diffusion model, without using explicit text prompts. The explicit branch utilizes the ground-truth labels of corresponding images as text prompts to condition feature extraction of diffusion model. During training, we jointly train diffusion model by sharing the model weights of these two branches. As a result, implicit and explicit branches can jointly guide feature learning. During inference, we only employ implicit branch for final prediction, which does not require any ground-truth labels. Experiments are performed on two typical perception tasks, including semantic segmentation and depth estimation. Our IEDP achieves promising performance on both tasks. For semantic segmentation, our IEDP has the mIoU$^\text{ss}$ score of 55.9% on AD20K validation set, which outperforms the baseline method VPD by 2.2%. For depth estimation, our IEDP outperforms the baseline method VPD with a relative gain of 11.0%.

Knowledge-based Visual Question Answering (VQA) requires models to incorporate external knowledge to respond to questions about visual content. Previous methods mostly follow the "retrieve and generate" paradigm. Initially, they utilize a pre-trained retriever to fetch relevant knowledge documents, subsequently employing them to generate answers. While these methods have demonstrated commendable performance in the task, they possess limitations: (1) they employ an independent retriever to acquire knowledge solely based on the similarity between the query and knowledge embeddings, without assessing whether the knowledge document is truly conducive to helping answer the question; (2) they convert the image into text and then conduct retrieval and answering in natural language space, which may not ensure comprehensive acquisition of all image information. To address these limitations, we propose Boter, a novel framework designed to bootstrap knowledge selection and question answering by leveraging the robust multimodal perception capabilities of the Multimodal Large Language Model (MLLM). The framework consists of two modules: Selector and Answerer, where both are initialized by the MLLM and parameter-efficiently finetuned in a simple cycle: find key knowledge in the retrieved knowledge documents using the Selector, and then use them to finetune the Answerer to predict answers; obtain the pseudo-labels of key knowledge documents based on the predictions of the Answerer and weak supervision labels, and then finetune the Selector to select key knowledge; repeat. Our framework significantly enhances the performance of the baseline on the challenging open-domain Knowledge-based VQA benchmark, OK-VQA, achieving a state-of-the-art accuracy of 62.83%.

Inspiration is linked to various positive outcomes, such as increased creativity, productivity, and happiness. Although inspiration has great potential, there has been limited effort toward identifying content that is inspiring, as opposed to just engaging or positive. Additionally, most research has concentrated on Western data, with little attention paid to other cultures. This work is the first to study cross-cultural inspiration through machine learning methods. We aim to identify and analyze real and AI-generated cross-cultural inspiring posts. To this end, we compile and make publicly available the InspAIred dataset, which consists of 2,000 real inspiring posts, 2,000 real non-inspiring posts, and 2,000 generated inspiring posts evenly distributed across India and the UK. The real posts are sourced from Reddit, while the generated posts are created using the GPT-4 model. Using this dataset, we conduct extensive computational linguistic analyses to (1) compare inspiring content across cultures, (2) compare AI-generated inspiring posts to real inspiring posts, and (3) determine if detection models can accurately distinguish between inspiring content across cultures and data sources.

Automatic live video commenting is with increasing attention due to its significance in narration generation, topic explanation, etc. However, the diverse sentiment consideration of the generated comments is missing from the current methods. Sentimental factors are critical in interactive commenting, and lack of research so far. Thus, in this paper, we propose a Sentiment-oriented Transformer-based Variational Autoencoder (So-TVAE) network which consists of a sentiment-oriented diversity encoder module and a batch attention module, to achieve diverse video commenting with multiple sentiments and multiple semantics. Specifically, our sentiment-oriented diversity encoder elegantly combines VAE and random mask mechanism to achieve semantic diversity under sentiment guidance, which is then fused with cross-modal features to generate live video comments. Furthermore, a batch attention module is also proposed in this paper to alleviate the problem of missing sentimental samples, caused by the data imbalance, which is common in live videos as the popularity of videos varies. Extensive experiments on Livebot and VideoIC datasets demonstrate that the proposed So-TVAE outperforms the state-of-the-art methods in terms of the quality and diversity of generated comments. Related code is available at //github.com/fufy1024/So-TVAE.

Document Question Answering (QA) presents a challenge in understanding visually-rich documents (VRD), particularly those dominated by lengthy textual content like research journal articles. Existing studies primarily focus on real-world documents with sparse text, while challenges persist in comprehending the hierarchical semantic relations among multiple pages to locate multimodal components. To address this gap, we propose PDF-MVQA, which is tailored for research journal articles, encompassing multiple pages and multimodal information retrieval. Unlike traditional machine reading comprehension (MRC) tasks, our approach aims to retrieve entire paragraphs containing answers or visually rich document entities like tables and figures. Our contributions include the introduction of a comprehensive PDF Document VQA dataset, allowing the examination of semantically hierarchical layout structures in text-dominant documents. We also present new VRD-QA frameworks designed to grasp textual contents and relations among document layouts simultaneously, extending page-level understanding to the entire multi-page document. Through this work, we aim to enhance the capabilities of existing vision-and-language models in handling challenges posed by text-dominant documents in VRD-QA.

The potential of automatic task-solving through Large Language Model (LLM)-based multi-agent collaboration has recently garnered widespread attention from both the research community and industry. While utilizing natural language to coordinate multiple agents presents a promising avenue for democratizing agent technology for general users, designing coordination strategies remains challenging with existing coordination frameworks. This difficulty stems from the inherent ambiguity of natural language for specifying the collaboration process and the significant cognitive effort required to extract crucial information (e.g. agent relationship, task dependency, result correspondence) from a vast amount of text-form content during exploration. In this work, we present a visual exploration framework to facilitate the design of coordination strategies in multi-agent collaboration. We first establish a structured representation for LLM-based multi-agent coordination strategy to regularize the ambiguity of natural language. Based on this structure, we devise a three-stage generation method that leverages LLMs to convert a user's general goal into an executable initial coordination strategy. Users can further intervene at any stage of the generation process, utilizing LLMs and a set of interactions to explore alternative strategies. Whenever a satisfactory strategy is identified, users can commence the collaboration and examine the visually enhanced execution result. We develop AgentCoord, a prototype interactive system, and conduct a formal user study to demonstrate the feasibility and effectiveness of our approach.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司