亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unmanned Aerial Vehicles (UAVs) hold great potential to support a wide range of applications due to the high maneuverability and flexibility. Compared with single UAV, UAV swarm carries out tasks efficiently in harsh environment, where the network resilience is of vital importance to UAV swarm. The network topology has a fundamental impact on the resilience of UAV network. It is discovered that scale-free network topology, as a topology that exists widely in nature, has the ability to enhance the network resilience. Besides, increasing network throughput can enhance the efficiency of information interaction, improving the network resilience. Facing these facts, this paper studies the throughput of UAV Network with scale-free topology. Introducing the hybrid network structure combining both ad hoc transmission mode and cellular transmission mode into UAV Network, the throughput of UAV Network is improved compared with that of pure ad hoc UAV network. Furthermore, this work also investigates the optimal setting of the hop threshold for the selection of ad hoc or cellular transmission mode. It is discovered that the optimal hop threshold is related with the number of UAVs and the parameters of scale-free topology. This paper may motivate the application of hybrid network structure into UAV Network.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Distributionally Robust Optimal Control (DROC) is a technique that enables robust control in a stochastic setting when the true distribution is not known. Traditional DROC approaches require given ambiguity sets or a KL divergence bound to represent the distributional uncertainty. These may not be known a priori and may require hand-crafting. In this paper, we lift this assumption by introducing a data-driven technique for estimating the uncertainty and a bound for the KL divergence. We call this technique D3ROC. To evaluate the effectiveness of our approach, we consider a navigation problem for a car-like robot with unknown noise distributions. The results demonstrate that D3ROC provides robust and efficient control policies that outperform the iterative Linear Quadratic Gaussian (iLQG) control. The results also show the effectiveness of our proposed approach in handling different noise distributions.

Cell-free massive multiple-input-multiple-output (CF-mMIMO) is a next-generation wireless access technology that offers superior coverage and spectral efficiency compared to conventional MIMO. With many future applications in unlicensed spectrum bands, networks will likely experience and may even be limited by out-of-system (OoS) interference. The OoS interference differs from the in-system interference from other serving users in that for OoS interference, the associated pilot signals are unknown or non-existent, which makes estimation of the OoS interferer channel difficult. In this paper, we propose a novel sequential algorithm for the suppression of OoS interference for uplink CF-mMIMO with a stripe (daisy-chain) topology. The proposed method has comparable performance to that of a fully centralized interference rejection combining algorithm but has substantially less fronthaul load requirements.

Optical flow estimation aims to find the 2D dense motion field between two frames. Due to the limitation of model structures and training datasets, existing methods often rely too much on local clues and ignore the integrity of objects, resulting in fragmented motion estimation. We notice that the recently famous Segment Anything Model (SAM) demonstrates a strong ability to segment complete objects, which is suitable for solving the fragmentation problem in optical flow estimation. We thus propose a solution to embed the frozen SAM image encoder into FlowFormer to enhance object perception. To address the challenge of in-depth utilizing SAM in non-segmentation tasks like optical flow estimation, we propose an Optical Flow Task-Specific Adaption scheme, including a Context Fusion Module to fuse the SAM encoder with the optical flow context encoder, and a Context Adaption Module to adapt the SAM features for optical flow task with Learned Task-Specific Embedding. Our proposed SAMFlow model reaches 0.86/2.10 clean/final EPE and 3.55/12.32 EPE/F1-all on Sintel and KITTI-15 training set, surpassing Flowformer by 8.5%/9.9% and 13.2%/16.3%. Furthermore, our model achieves state-of-the-art performance on the Sintel and KITTI-15 benchmarks, ranking #1 among all two-frame methods on Sintel clean pass.

In this paper, we consider the coupled N/TH problem, in which the termination criterion for the neutronics iteration adopts an adaptive tolerance with respect to the fuel temperature residual at each Picard iteration. We refer to this coupling scheme as the inexact Picard iteration method. Fourier analysis is performed to investigate how the convergence behavior of Picard iteration is influenced by the inexact neutronics solution. It is found that if the convergence of the inner neutronics iteration is slow, Picard coupling may become unstable unless a tighter tolerance is used for the neutronics iteration. Nevertheless, our analysis indicates that a certain amount of over-solving is necessary for maintaining the stability of Picard iteration if the iterative solution of the subproblem is not fast enough. However, this issue has not been addressed in the previous studies.

Reconfigurable intelligent surfaces (RISs) allow controlling the propagation environment in wireless networks through reconfigurable elements. Recently, beyond diagonal RISs (BD-RISs) have been proposed as novel RIS architectures whose scattering matrix is not limited to being diagonal. However, BDRISs have been studied assuming continuous-value scattering matrices, which are hard to implement in practice. In this paper, we address this problem by proposing two solutions to realize discrete-value group and fully connected RISs. First, we propose scalar-discrete RISs, in which each entry of the RIS impedance matrix is independently discretized. Second, we propose vector-discrete RISs, where the entries in each group of the RIS impedance matrix are jointly discretized. In both solutions, the codebook is designed offline such as to minimize the distortion caused in the RIS impedance matrix by the discretization operation. Numerical results show that vector-discrete RISs achieve higher performance than scalar discrete RISs at the cost of increased optimization complexity. Furthermore, fewer resolution bits per impedance are necessary to achieve the performance upper bound as the group size of the group connected architecture increases. In particular, only a single resolution bit is sufficient in fully connected RISs to approximately achieve the performance upper bound.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司