亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we have considered two fully synchronous $\mathcal{OBLOT}$ robots having no agreement on coordinates entering a finite unoriented grid through a door vertex at a corner, one by one. There is a resource that can move around the grid synchronously with the robots until it gets co-located along with at least one robot. Assuming the robots can see and identify the resource, we consider the problem where the robots must meet at the location of this dynamic resource within finite rounds. We name this problem "Rendezvous on a Known Dynamic Point". Here, we have provided an algorithm for the two robots to gather at the location of the dynamic resource. We have also provided a lower bound on time for this problem and showed that with certain assumption on the waiting time of the resource on a single vertex, the algorithm provided is time optimal. We have also shown that it is impossible to solve this problem if the scheduler considered is semi-synchronous.

相關內容

機(ji)(ji)(ji)(ji)器(qi)(qi)人(ren)(ren)(英(ying)語:Robot)包括一切(qie)模擬人(ren)(ren)類行為或思(si)想與模擬其他生物的機(ji)(ji)(ji)(ji)械(如機(ji)(ji)(ji)(ji)器(qi)(qi)狗,機(ji)(ji)(ji)(ji)器(qi)(qi)貓等(deng))。狹義上對機(ji)(ji)(ji)(ji)器(qi)(qi)人(ren)(ren)的定義還有很多分類法及爭議,有些(xie)電腦(nao)程序(xu)甚至也被(bei)稱為機(ji)(ji)(ji)(ji)器(qi)(qi)人(ren)(ren)。在當代(dai)工(gong)業(ye)中,機(ji)(ji)(ji)(ji)器(qi)(qi)人(ren)(ren)指能自動運行任務(wu)的人(ren)(ren)造(zao)機(ji)(ji)(ji)(ji)器(qi)(qi)設備,用(yong)以取代(dai)或協助人(ren)(ren)類工(gong)作,一般會是機(ji)(ji)(ji)(ji)電設備,由計算機(ji)(ji)(ji)(ji)程序(xu)或是電子電路控制(zhi)。

知識薈萃

精品入門和進(jin)階教程、論(lun)文和代碼整理等

更多

查看(kan)相關VIP內容、論文(wen)、資(zi)訊等

Communication overhead is one of the major challenges in Federated Learning(FL). A few classical schemes assume the server can extract the auxiliary information about training data of the participants from the local models to construct a central dummy dataset. The server uses the dummy dataset to finetune aggregated global model to achieve the target test accuracy in fewer communication rounds. In this paper, we summarize the above solutions into a data-based communication-efficient FL framework. The key of the proposed framework is to design an efficient extraction module(EM) which ensures the dummy dataset has a positive effect on finetuning aggregated global model. Different from the existing methods that use generator to design EM, our proposed method, FedINIBoost borrows the idea of gradient match to construct EM. Specifically, FedINIBoost builds a proxy dataset of the real dataset in two steps for each participant at each communication round. Then the server aggregates all the proxy datasets to form a central dummy dataset, which is used to finetune aggregated global model. Extensive experiments verify the superiority of our method compared with the existing classical method, FedAVG, FedProx, Moon and FedFTG. Moreover, FedINIBoost plays a significant role in finetuning the performance of aggregated global model at the initial stage of FL.

We consider isogeometric discretizations of the Poisson model problem, focusing on high polynomial degrees and strong hierarchical refinements. We derive a posteriori error estimates by equilibrated fluxes, i.e., vector-valued mapped piecewise polynomials lying in the $\boldsymbol{H}({\rm div})$ space which appropriately approximate the desired divergence constraint. Our estimates are constant-free in the leading term, locally efficient, and robust with respect to the polynomial degree. They are also robust with respect to the number of hanging nodes arising in adaptive mesh refinement employing hierarchical B-splines. Two partitions of unity are designed, one with larger supports corresponding to the mapped splines, and one with small supports corresponding to mapped piecewise multilinear finite element hat basis functions. The equilibration is only performed on the small supports, avoiding the higher computational price of equilibration on the large supports or even the solution of a global system. Thus, the derived estimates are also as inexpensive as possible. An abstract framework for such a setting is developed, whose application to a specific situation only requests a verification of a few clearly identified assumptions. Numerical experiments illustrate the theoretical developments.

Grey-box fuzzing is the lightweight approach of choice for finding bugs in sequential programs. It provides a balance between efficiency and effectiveness by conducting a biased random search over the domain of program inputs using a feedback function from observed test executions. For distributed system testing, however, the state-of-practice is represented today by only black-box tools that do not attempt to infer and exploit any knowledge of the system's past behaviours to guide the search for bugs. In this work, we present Mallory: the first framework for grey-box fuzz-testing of distributed systems. Unlike popular black-box distributed system fuzzers, such as Jepsen, that search for bugs by randomly injecting network partitions and node faults or by following human-defined schedules, Mallory is adaptive. It exercises a novel metric to learn how to maximize the number of observed system behaviors by choosing different sequences of faults, thus increasing the likelihood of finding new bugs. The key enablers for our approach are the new ideas of timeline-driven testing and timeline abstraction that provide the feedback function guiding a biased random search for failures. Mallory dynamically constructs Lamport timelines of the system behaviour, abstracts these timelines into happens-before summaries, and introduces faults guided by its real-time observation of the summaries. We have evaluated Mallory on a diverse set of widely-used industrial distributed systems. Compared to the start-of-the-art black-box fuzzer Jepsen, Mallory explores more behaviours and takes less time to find bugs. Mallory discovered 22 zero-day bugs (of which 18 were confirmed by developers), including 10 new vulnerabilities, in rigorously-tested distributed systems such as Braft, Dqlite, and Redis. 6 new CVEs have been assigned.

We provide new algorithms and conditional hardness for the problem of estimating effective resistances in $n$-node $m$-edge undirected, expander graphs. We provide an $\widetilde{O}(m\epsilon^{-1})$-time algorithm that produces with high probability, an $\widetilde{O}(n\epsilon^{-1})$-bit sketch from which the effective resistance between any pair of nodes can be estimated, to $(1 \pm \epsilon)$-multiplicative accuracy, in $\widetilde{O}(1)$-time. Consequently, we obtain an $\widetilde{O}(m\epsilon^{-1})$-time algorithm for estimating the effective resistance of all edges in such graphs, improving (for sparse graphs) on the previous fastest runtimes of $\widetilde{O}(m\epsilon^{-3/2})$ [Chu et. al. 2018] and $\widetilde{O}(n^2\epsilon^{-1})$ [Jambulapati, Sidford, 2018] for general graphs and $\widetilde{O}(m + n\epsilon^{-2})$ for expanders [Li, Sachdeva 2022]. We complement this result by showing a conditional lower bound that a broad set of algorithms for computing such estimates of the effective resistances between all pairs of nodes require $\widetilde{\Omega}(n^2 \epsilon^{-1/2})$-time, improving upon the previous best such lower bound of $\widetilde{\Omega}(n^2 \epsilon^{-1/13})$ [Musco et. al. 2017]. Further, we leverage the tools underlying these results to obtain improved algorithms and conditional hardness for more general problems of sketching the pseudoinverse of positive semidefinite matrices and estimating functions of their eigenvalues.

Strong secrecy communication over a discrete memoryless state-dependent multiple access channel (SD-MAC) with an external eavesdropper is investigated. The channel is governed by discrete memoryless and i.i.d. channel states and the channel state information (CSI) is revealed to the encoders in a causal manner. Inner and outer bounds are provided. To establish the inner bound, we investigate coding schemes incorporating wiretap coding and secret key agreement between the sender and the legitimate receiver. Two kinds of block Markov coding schemes are proposed. The first one is a new coding scheme using backward decoding and Wyner-Ziv coding and the secret key is constructed from a lossy description of the CSI. The other one is an extended version of the existing coding scheme for point-to-point wiretap channels with causal CSI. A numerical example shows that the achievable region given by the first coding scheme can be strictly larger than the second one. However, these two schemes do not outperform each other in general and there exists some numerical examples that in different channel models each coding scheme achieves some rate pairs that cannot be achieved by another scheme. Our established inner bound reduces to some best-known results in the literature as special cases. We further investigate some capacity-achieving cases for state-dependent multiple access wiretap channels (SD-MAWCs) with degraded message sets. It turns out that the two coding schemes are both optimal in these cases.

We study multi-agent reinforcement learning in the setting of episodic Markov decision processes, where multiple agents cooperate via communication through a central server. We propose a provably efficient algorithm based on value iteration that enable asynchronous communication while ensuring the advantage of cooperation with low communication overhead. With linear function approximation, we prove that our algorithm enjoys an $\tilde{\mathcal{O}}(d^{3/2}H^2\sqrt{K})$ regret with $\tilde{\mathcal{O}}(dHM^2)$ communication complexity, where $d$ is the feature dimension, $H$ is the horizon length, $M$ is the total number of agents, and $K$ is the total number of episodes. We also provide a lower bound showing that a minimal $\Omega(dM)$ communication complexity is required to improve the performance through collaboration.

We study a dynamic allocation problem in which $T$ sequentially arriving divisible resources are to be allocated to a number of agents with linear utilities. The marginal utilities of each resource to the agents are drawn stochastically from a known joint distribution, independently and identically across time, and the central planner makes immediate and irrevocable allocation decisions. Most works on dynamic resource allocation aim to maximize the utilitarian welfare, i.e., the efficiency of the allocation, which may result in unfair concentration of resources on certain high-utility agents while leaving others' demands under-fulfilled. In this paper, aiming at balancing efficiency and fairness, we instead consider a broad collection of welfare metrics, the H\"older means, which includes the Nash social welfare and the egalitarian welfare. To this end, we first study a fluid-based policy derived from a deterministic surrogate to the underlying problem and show that for all smooth H\"older mean welfare metrics it attains an $O(1)$ regret over the time horizon length $T$ against the hindsight optimum, i.e., the optimal welfare if all utilities were known in advance of deciding on allocations. However, when evaluated under the non-smooth egalitarian welfare, the fluid-based policy attains a regret of order $\Theta(\sqrt{T})$. We then propose a new policy built thereupon, called Backward Infrequent Re-solving with Thresholding ($\mathsf{BIRT}$), which consists of re-solving the deterministic surrogate problem at most $O(\log\log T)$ times. We prove the $\mathsf{BIRT}$ policy attains an $O(1)$ regret against the hindsight optimal egalitarian welfare, independently of the time horizon length $T$. We conclude by presenting numerical experiments to corroborate our theoretical claims and to illustrate the significant performance improvement against several benchmark policies.

Collecting and leveraging data with good coverage properties plays a crucial role in different aspects of reinforcement learning (RL), including reward-free exploration and offline learning. However, the notion of "good coverage" really depends on the application at hand, as data suitable for one context may not be so for another. In this paper, we formalize the problem of active coverage in episodic Markov decision processes (MDPs), where the goal is to interact with the environment so as to fulfill given sampling requirements. This framework is sufficiently flexible to specify any desired coverage property, making it applicable to any problem that involves online exploration. Our main contribution is an instance-dependent lower bound on the sample complexity of active coverage and a simple game-theoretic algorithm, CovGame, that nearly matches it. We then show that CovGame can be used as a building block to solve different PAC RL tasks. In particular, we obtain a simple algorithm for PAC reward-free exploration with an instance-dependent sample complexity that, in certain MDPs which are "easy to explore", is lower than the minimax one. By further coupling this exploration algorithm with a new technique to do implicit eliminations in policy space, we obtain a computationally-efficient algorithm for best-policy identification whose instance-dependent sample complexity scales with gaps between policy values.

The utilization of teleoperation is a crucial aspect of the construction industry, as it enables operators to control machines safely from a distance. However, remote operation of these machines at a joint level using individual joysticks necessitates extensive training for operators to achieve proficiency due to their multiple degrees of freedom. Additionally, verifying the machine resulting motion is only possible after execution, making optimal control challenging. In addressing this issue, this study proposes a reinforcement learning-based approach to optimize task performance. The control policy acquired through learning is used to provide instructions on efficiently controlling and coordinating multiple joints. To evaluate the effectiveness of the proposed framework, a user study is conducted with a Brokk 170 construction machine by assessing its performance in a typical construction task involving inserting a chisel into a borehole. The effectiveness of the proposed framework is evaluated by comparing the performance of participants in the presence and absence of virtual fixtures. This study results demonstrate the proposed framework potential in enhancing the teleoperation process in the construction industry.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司