亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Gromov-Wasserstein (GW) distance quantifies discrepancy between metric measure spaces, but suffers from computational hardness. The entropic Gromov-Wasserstein (EGW) distance serves as a computationally efficient proxy for the GW distance. Recently, it was shown that the quadratic GW and EGW distances admit variational forms that tie them to the well-understood optimal transport (OT) and entropic OT (EOT) problems. By leveraging this connection, we derive two notions of stability for the EGW problem with the quadratic or inner product cost. The first stability notion enables us to establish convexity and smoothness of the objective in this variational problem. This results in the first efficient algorithms for solving the EGW problem that are subject to formal guarantees in both the convex and non-convex regimes. The second stability notion is used to derive a comprehensive limit distribution theory for the empirical EGW distance and, under additional conditions, asymptotic normality, bootstrap consistency, and semiparametric efficiency thereof.

相關內容

Medical image segmentation is a crucial task that relies on the ability to accurately identify and isolate regions of interest in medical images. Thereby, generative approaches allow to capture the statistical properties of segmentation masks that are dependent on the respective structures. In this work we propose a conditional score-based generative modeling framework to represent the signed distance function (SDF) leading to an implicit distribution of segmentation masks. The advantage of leveraging the SDF is a more natural distortion when compared to that of binary masks. By learning the score function of the conditional distribution of SDFs we can accurately sample from the distribution of segmentation masks, allowing for the evaluation of statistical quantities. Thus, this probabilistic representation allows for the generation of uncertainty maps represented by the variance, which can aid in further analysis and enhance the predictive robustness. We qualitatively and quantitatively illustrate competitive performance of the proposed method on a public nuclei and gland segmentation data set, highlighting its potential utility in medical image segmentation applications.

An asymptotic preserving and energy stable scheme for the Euler-Poisson system under the quasineutral scaling is designed and analysed. Correction terms are introduced in the convective fluxes and the electrostatic potential, which lead to the dissipation of mechanical energy and the entropy stability. The resolution of the semi-implicit in time finite volume in space fully-discrete scheme involves two steps: the solution of an elliptic problem for the potential and an explicit evaluation for the density and velocity. The proposed scheme possesses several physically relevant attributes, such as the the entropy stability and the consistency with the weak formulation of the continuous Euler-Poisson system. The AP property of the scheme, i.e. the boundedness of the mesh parameters with respect to the Debye length and its consistency with the quasineutral limit system, is shown. The results of numerical case studies are presented to substantiate the robustness and efficiency of the proposed method.

We establish an $L_1$-bound between the coefficients of the optimal causal filter applied to the data-generating process and its finite sample approximation. Here, we assume that the data-generating process is a second-order stationary time series with either short or long memory autocovariances. To derive the $L_1$-bound, we first provide an exact expression for the coefficients of the causal filter and their approximations in terms of the absolute convergent series of the multistep ahead infinite and finite predictor coefficients, respectively. Then, we prove a so-called uniform Baxter's inequality to obtain a bound for the difference between the infinite and finite multistep ahead predictor coefficients in both short and memory time series. The $L_1$-approximation error bound for the causal filter coefficients can be used to evaluate the performance of the linear predictions of time series through the mean squared error criterion.

We consider the problem of learning from data corrupted by underrepresentation bias, where positive examples are filtered from the data at different, unknown rates for a fixed number of sensitive groups. We show that with a small amount of unbiased data, we can efficiently estimate the group-wise drop-out parameters, even in settings where intersectional group membership makes learning each intersectional rate computationally infeasible. Using this estimate for the group-wise drop-out rate, we construct a re-weighting scheme that allows us to approximate the loss of any hypothesis on the true distribution, even if we only observe the empirical error on a biased sample. Finally, we present an algorithm encapsulating this learning and re-weighting process, and we provide strong PAC-style guarantees that, with high probability, our estimate of the risk of the hypothesis over the true distribution will be arbitrarily close to the true risk.

Training machine learning models with differential privacy (DP) has received increasing interest in recent years. One of the most popular algorithms for training differentially private models is differentially private stochastic gradient descent (DPSGD) and its variants, where at each step gradients are clipped and combined with some noise. Given the increasing usage of DPSGD, we ask the question: is DPSGD alone sufficient to find a good minimizer for every dataset under privacy constraints? As a first step towards answering this question, we show that even for the simple case of linear classification, unlike non-private optimization, (private) feature preprocessing is vital for differentially private optimization. In detail, we first show theoretically that there exists an example where without feature preprocessing, DPSGD incurs a privacy error proportional to the maximum norm of features over all samples. We then propose an algorithm called DPSGD-F, which combines DPSGD with feature preprocessing and prove that for classification tasks, it incurs a privacy error proportional to the diameter of the features $\max_{x, x' \in D} \|x - x'\|_2$. We then demonstrate the practicality of our algorithm on image classification benchmarks.

We study Bayesian histograms for distribution estimation on $[0,1]^d$ under the Wasserstein $W_v, 1 \leq v < \infty$ distance in the i.i.d sampling regime. We newly show that when $d < 2v$, histograms possess a special \textit{memory efficiency} property, whereby in reference to the sample size $n$, order $n^{d/2v}$ bins are needed to obtain minimax rate optimality. This result holds for the posterior mean histogram and with respect to posterior contraction: under the class of Borel probability measures and some classes of smooth densities. The attained memory footprint overcomes existing minimax optimal procedures by a polynomial factor in $n$; for example an $n^{1 - d/2v}$ factor reduction in the footprint when compared to the empirical measure, a minimax estimator in the Borel probability measure class. Additionally constructing both the posterior mean histogram and the posterior itself can be done super--linearly in $n$. Due to the popularity of the $W_1,W_2$ metrics and the coverage provided by the $d < 2v$ case, our results are of most practical interest in the $(d=1,v =1,2), (d=2,v=2), (d=3,v=2)$ settings and we provide simulations demonstrating the theory in several of these instances.

Gromov-Wasserstein distance has found many applications in machine learning due to its ability to compare measures across metric spaces and its invariance to isometric transformations. However, in certain applications, this invariance property can be too flexible, thus undesirable. Moreover, the Gromov-Wasserstein distance solely considers pairwise sample similarities in input datasets, disregarding the raw feature representations. We propose a new optimal transport-based distance, called Augmented Gromov-Wasserstein, that allows for some control over the level of rigidity to transformations. It also incorporates feature alignments, enabling us to better leverage prior knowledge on the input data for improved performance. We present theoretical insights into the proposed metric. We then demonstrate its usefulness for single-cell multi-omic alignment tasks and a transfer learning scenario in machine learning.

Bayesian nonparametric mixture models are widely used to cluster observations. However, one major drawback of the approach is that the estimated partition often presents unbalanced clusters' frequencies with only a few dominating clusters and a large number of sparsely-populated ones. This feature translates into results that are often uninterpretable unless we accept to ignore a relevant number of observations and clusters. Interpreting the posterior distribution as penalized likelihood, we show how the unbalance can be explained as a direct consequence of the cost functions involved in estimating the partition. In light of our findings, we propose a novel Bayesian estimator of the clustering configuration. The proposed estimator is equivalent to a post-processing procedure that reduces the number of sparsely-populated clusters and enhances interpretability. The procedure takes the form of entropy-regularization of the Bayesian estimate. While being computationally convenient with respect to alternative strategies, it is also theoretically justified as a correction to the Bayesian loss function used for point estimation and, as such, can be applied to any posterior distribution of clusters, regardless of the specific model used.

In single-particle cryo-electron microscopy (cryo-EM), the efficient determination of orientation parameters for 2D projection images poses a significant challenge yet is crucial for reconstructing 3D structures. This task is complicated by the high noise levels present in the cryo-EM datasets, which often include outliers, necessitating several time-consuming 2D clean-up processes. Recently, solutions based on deep learning have emerged, offering a more streamlined approach to the traditionally laborious task of orientation estimation. These solutions often employ amortized inference, eliminating the need to estimate parameters individually for each image. However, these methods frequently overlook the presence of outliers and may not adequately concentrate on the components used within the network. This paper introduces a novel approach that uses a 10-dimensional feature vector to represent the orientation and applies a Quadratically-Constrained Quadratic Program to derive the predicted orientation as a unit quaternion, supplemented by an uncertainty metric. Furthermore, we propose a unique loss function that considers the pairwise distances between orientations, thereby enhancing the accuracy of our method. Finally, we also comprehensively evaluate the design choices involved in constructing the encoder network, a topic that has not received sufficient attention in the literature. Our numerical analysis demonstrates that our methodology effectively recovers orientations from 2D cryo-EM images in an end-to-end manner. Importantly, the inclusion of uncertainty quantification allows for direct clean-up of the dataset at the 3D level. Lastly, we package our proposed methods into a user-friendly software suite named cryo-forum, designed for easy accessibility by the developers.

We study the problem of fairly allocating $m$ indivisible items among $n$ agents. Envy-free allocations, in which each agent prefers her bundle to the bundle of every other agent, need not exist in the worst case. However, when agents have additive preferences and the value $v_{i,j}$ of agent $i$ for item $j$ is drawn independently from a distribution $D_i$, envy-free allocations exist with high probability when $m \in \Omega( n \log n / \log \log n )$. In this paper, we study the existence of envy-free allocations under stochastic valuations far beyond the additive setting. We introduce a new stochastic model in which each agent's valuation is sampled by first fixing a worst-case function, and then drawing a uniformly random renaming of the items, independently for each agent. This strictly generalizes known settings; for example, $v_{i,j} \sim D_i$ may be seen as picking a random (instead of a worst-case) additive function before renaming. We prove that random renaming is sufficient to ensure that envy-free allocations exist with high probability in very general settings. When valuations are non-negative and ``order-consistent,'' a valuation class that generalizes additive, budget-additive, unit-demand, and single-minded agents, SD-envy-free allocations (a stronger notion of fairness than envy-freeness) exist for $m \in \omega(n^2)$ when $n$ divides $m$, and SD-EFX allocations exist for all $m \in \omega(n^2)$. The dependence on $n$ is tight, that is, for $m \in O(n^2)$ envy-free allocations don't exist with constant probability. For the case of arbitrary valuations (allowing non-monotone, negative, or mixed-manna valuations) and $n=2$ agents, we prove envy-free allocations exist with probability $1 - \Theta(1/m)$ (and this is tight).

北京阿比特科技有限公司