亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As a way to implement the "right to be forgotten" in machine learning, \textit{machine unlearning} aims to completely remove the contributions and information of the samples to be deleted from a trained model without affecting the contributions of other samples. Recently, many frameworks for machine unlearning have been proposed, and most of them focus on image and text data. To extend machine unlearning to graph data, \textit{GraphEraser} has been proposed. However, a critical issue is that \textit{GraphEraser} is specifically designed for the transductive graph setting, where the graph is static and attributes and edges of test nodes are visible during training. It is unsuitable for the inductive setting, where the graph could be dynamic and the test graph information is invisible in advance. Such inductive capability is essential for production machine learning systems with evolving graphs like social media and transaction networks. To fill this gap, we propose the \underline{{\bf G}}\underline{{\bf U}}ided \underline{{\bf I}}n\underline{{\bf D}}uctiv\underline{{\bf E}} Graph Unlearning framework (GUIDE). GUIDE consists of three components: guided graph partitioning with fairness and balance, efficient subgraph repair, and similarity-based aggregation. Empirically, we evaluate our method on several inductive benchmarks and evolving transaction graphs. Generally speaking, GUIDE can be efficiently implemented on the inductive graph learning tasks for its low graph partition cost, no matter on computation or structure information. The code will be available here: //github.com/Happy2Git/GUIDE.

相關內容

 由點和線組成的用以描述系統的圖形。圖模型屬于結構模型(見模型),可用于描述自然界和人類社會中的大量事物和事物之間的關系。在建模中采用圖模型可利用圖論作為工具。按圖的性質進行分析為研究各種系統特別是復雜系統提供了一種有效的方法。構成圖模型的圖形不同于一般的幾何圖形。例如,它的每條邊可以被賦以權,組成加權圖。權可取一定數值,用以表示距離、流量、費用等。加權圖可用于研究電網絡、運輸網絡、通信網絡以及運籌學中的一些重要課題。圖模型廣泛應用于自然科學、工程技術、社會經濟和管理等方面。見動態結構圖、信號流程圖、計劃協調技術、圖解協調技術、風險協調技術、網絡技術、網絡理論。

We aim to deepen the theoretical understanding of Graph Neural Networks (GNNs) on large graphs, with a focus on their expressive power. Existing analyses relate this notion to the graph isomorphism problem, which is mostly relevant for graphs of small sizes, or studied graph classification or regression tasks, while prediction tasks on nodes are far more relevant on large graphs. Recently, several works showed that, on very general random graphs models, GNNs converge to certains functions as the number of nodes grows. In this paper, we provide a more complete and intuitive description of the function space generated by equivariant GNNs for node-tasks, through general notions of convergence that encompass several previous examples. We emphasize the role of input node features, and study the impact of node Positional Encodings (PEs), a recent line of work that has been shown to yield state-of-the-art results in practice. Through the study of several examples of PEs on large random graphs, we extend previously known universality results to significantly more general models. Our theoretical results hint at some normalization tricks, which is shown numerically to have a positive impact on GNN generalization on synthetic and real data. Our proofs contain new concentration inequalities of independent interest.

We introduce Chain of Knowledge (CoK), a framework that augments large language models with structured knowledge bases to improve factual correctness and reduce hallucination. Compared to previous works which only retrieve unstructured texts, CoK leverages structured knowledge bases which support complex queries and offer more direct factual statements. To assist large language models to effectively query knowledge bases, we propose a query generator model with contrastive instruction-tuning. As the query generator is separate from the frozen large language model, our framework is modular and thus easily adapted to various knowledge sources and models. Experiments show that our framework significantly enhances the factual correctness of large language models on knowledge-intensive tasks.

Learning algorithms and data are the driving forces for machine learning to bring about tremendous transformation of industrial intelligence. However, individuals' right to retract their personal data and relevant data privacy regulations pose great challenges to machine learning: how to design an efficient mechanism to support certified data removals. Removal of previously seen data known as machine unlearning is challenging as these data points were implicitly memorized in training process of learning algorithms. Retraining remaining data from scratch straightforwardly serves such deletion requests, however, this naive method is not often computationally feasible. We propose the unlearning scheme random relabeling, which is applicable to generic supervised learning algorithms, to efficiently deal with sequential data removal requests in the online setting. A less constraining removal certification method based on probability distribution similarity with naive unlearning is further developed for logit-based classifiers.

Learning on graphs is becoming prevalent in a wide range of applications including social networks, robotics, communication, medicine, etc. These datasets belonging to entities often contain critical private information. The utilization of data for graph learning applications is hampered by the growing privacy concerns from users on data sharing. Existing privacy-preserving methods pre-process the data to extract user-side features, and only these features are used for subsequent learning. Unfortunately, these methods are vulnerable to adversarial attacks to infer private attributes. We present a novel privacy-respecting framework for distributed graph learning and graph-based machine learning. In order to perform graph learning and other downstream tasks on the server side, this framework aims to learn features as well as distances without requiring actual features while preserving the original structural properties of the raw data. The proposed framework is quite generic and highly adaptable. We demonstrate the utility of the Euclidean space, but it can be applied with any existing method of distance approximation and graph learning for the relevant spaces. Through extensive experimentation on both synthetic and real datasets, we demonstrate the efficacy of the framework in terms of comparing the results obtained without data sharing to those obtained with data sharing as a benchmark. This is, to our knowledge, the first privacy-preserving distributed graph learning framework.

Artificial Intelligence (AI) is making a profound impact in almost every domain. One of the crucial factors contributing to this success has been the access to an abundance of high-quality data for constructing machine learning models. Lately, as the role of data in artificial intelligence has been significantly magnified, concerns have arisen regarding the secure utilization of data, particularly in the context of unauthorized data usage. To mitigate data exploitation, data unlearning have been introduced to render data unexploitable. However, current unlearnable examples lack the generalization required for wide applicability. In this paper, we present a novel, generalizable data protection method by generating transferable unlearnable examples. To the best of our knowledge, this is the first solution that examines data privacy from the perspective of data distribution. Through extensive experimentation, we substantiate the enhanced generalizable protection capabilities of our proposed method.

Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.

Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司