亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Autonomous vehicles require accurate and reliable short-term trajectory predictions for safe and efficient driving. While most commercial automated vehicles currently use state machine-based algorithms for trajectory forecasting, recent efforts have focused on end-to-end data-driven systems. Often, the design of these models is limited by the availability of datasets, which are typically restricted to generic scenarios. To address this limitation, we have developed a synthetic dataset for short-term trajectory prediction tasks using the CARLA simulator. This dataset is extensive and incorporates what is considered complex scenarios - pedestrians crossing the road, vehicles overtaking - and comprises 6000 perspective view images with corresponding IMU and odometry information for each frame. Furthermore, an end-to-end short-term trajectory prediction model using convolutional neural networks (CNN) and long short-term memory (LSTM) networks has also been developed. This model can handle corner cases, such as slowing down near zebra crossings and stopping when pedestrians cross the road, without the need for explicit encoding of the surrounding environment. In an effort to accelerate this research and assist others, we are releasing our dataset and model to the research community. Our datasets are publicly available on //github.com/navigatinguncertainty.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Automator · 標注 · Taxonomy · PubMed ·
2023 年 9 月 1 日

Mentions of new concepts appear regularly in texts and require automated approaches to harvest and place them into Knowledge Bases (KB), e.g., ontologies and taxonomies. Existing datasets suffer from three issues, (i) mostly assuming that a new concept is pre-discovered and cannot support out-of-KB mention discovery; (ii) only using the concept label as the input along with the KB and thus lacking the contexts of a concept label; and (iii) mostly focusing on concept placement w.r.t a taxonomy of atomic concepts, instead of complex concepts, i.e., with logical operators. To address these issues, we propose a new benchmark, adapting MedMentions dataset (PubMed abstracts) with SNOMED CT versions in 2014 and 2017 under the Diseases sub-category and the broader categories of Clinical finding, Procedure, and Pharmaceutical / biologic product. We provide usage on the evaluation with the dataset for out-of-KB mention discovery and concept placement, adapting recent Large Language Model based methods.

Developing reliable autonomous driving algorithms poses challenges in testing, particularly when it comes to safety-critical traffic scenarios involving pedestrians. An open question is how to simulate rare events, not necessarily found in autonomous driving datasets or scripted simulations, but which can occur in testing, and, in the end may lead to severe pedestrian related accidents. This paper presents a method for designing a suicidal pedestrian agent within the CARLA simulator, enabling the automatic generation of traffic scenarios for testing safety of autonomous vehicles (AVs) in dangerous situations with pedestrians. The pedestrian is modeled as a reinforcement learning (RL) agent with two custom reward functions that allow the agent to either arbitrarily or with high velocity to collide with the AV. Instead of significantly constraining the initial locations and the pedestrian behavior, we allow the pedestrian and autonomous car to be placed anywhere in the environment and the pedestrian to roam freely to generate diverse scenarios. To assess the performance of the suicidal pedestrian and the target vehicle during testing, we propose three collision-oriented evaluation metrics. Experimental results involving two state-of-the-art autonomous driving algorithms trained end-to-end with imitation learning from sensor data demonstrate the effectiveness of the suicidal pedestrian in identifying decision errors made by autonomous vehicles controlled by the algorithms.

The rapid growth in demand for HPC systems has led to a rise in carbon footprint, which requires urgent intervention. In this work, we present a comprehensive analysis of the carbon footprint of high-performance computing (HPC) systems, considering the carbon footprint during both the hardware manufacturing and system operational stages. Our work employs HPC hardware component carbon footprint modeling, regional carbon intensity analysis, and experimental characterization of the system life cycle to highlight the importance of quantifying the carbon footprint of HPC systems.

Visual model-based RL methods typically encode image observations into low-dimensional representations in a manner that does not eliminate redundant information. This leaves them susceptible to spurious variations -- changes in task-irrelevant components such as background distractors or lighting conditions. In this paper, we propose a visual model-based RL method that learns a latent representation resilient to such spurious variations. Our training objective encourages the representation to be maximally predictive of dynamics and reward, while constraining the information flow from the observation to the latent representation. We demonstrate that this objective significantly bolsters the resilience of visual model-based RL methods to visual distractors, allowing them to operate in dynamic environments. We then show that while the learned encoder is resilient to spirious variations, it is not invariant under significant distribution shift. To address this, we propose a simple reward-free alignment procedure that enables test time adaptation of the encoder. This allows for quick adaptation to widely differing environments without having to relearn the dynamics and policy. Our effort is a step towards making model-based RL a practical and useful tool for dynamic, diverse domains. We show its effectiveness in simulation benchmarks with significant spurious variations as well as a real-world egocentric navigation task with noisy TVs in the background. Videos and code at //zchuning.github.io/repo-website/.

Connected automated vehicles have shown great potential to improve the efficiency of transportation systems in terms of passenger comfort, fuel economy, stability of driving behavior and mitigation of traffic congestions. Yet, to deploy these vehicles and leverage their benefits, the underlying algorithms must ensure their safe operation. In this paper, we address the safety of connected cruise control strategies for longitudinal car following using control barrier function (CBF) theory. In particular, we consider various safety measures such as minimum distance, time headway and time to conflict, and provide a formal analysis of these measures through the lens of CBFs. Additionally, motivated by how stability charts facilitate stable controller design, we derive safety charts for existing connected cruise controllers to identify safe choices of controller parameters. Finally, we combine the analysis of safety measures and the corresponding stability charts to synthesize safety-critical connected cruise controllers using CBFs. We verify our theoretical results by numerical simulations.

We consider the role of non-localities in speed-density data used to fit fundamental diagrams from vehicle trajectories. We demonstrate that the use of anticipated densities results in a clear classification of speed-density data into stationary and non-stationary points, namely, acceleration and deceleration regimes and their separating boundary. The separating boundary represents a locus of stationary traffic states, i.e., the fundamental diagram. To fit fundamental diagrams, we develop an enhanced cross entropy minimization method that honors equilibrium traffic physics. We illustrate the effectiveness of our proposed approach by comparing it with the traditional approach that uses local speed-density states and least squares estimation. Our experiments show that the separating boundary in our approach is invariant to varying trajectory samples within the same spatio-temporal region, providing further evidence that the separating boundary is indeed a locus of stationary traffic states.

Unmanned aerial vehicles (UAVs) are frequently used for inspecting power lines and capturing high-resolution aerial images. However, detecting power lines in aerial images is difficult,as the foreground data(i.e, power lines) is small and the background information is abundant.To tackle this problem, we introduce DUFormer, a semantic segmentation algorithm explicitly designed to detect power lines in aerial images. We presuppose that it is advantageous to train an efficient Transformer model with sufficient feature extraction using a convolutional neural network(CNN) with a strong inductive bias.With this goal in mind, we introduce a heavy token encoder that performs overlapping feature remodeling and tokenization. The encoder comprises a pyramid CNN feature extraction module and a power line feature enhancement module.After successful local feature extraction for power lines, feature fusion is conducted.Then,the Transformer block is used for global modeling. The final segmentation result is achieved by amalgamating local and global features in the decode head.Moreover, we demonstrate the importance of the joint multi-weight loss function in power line segmentation. Our experimental results show that our proposed method outperforms all state-of-the-art methods in power line segmentation on the publicly accessible TTPLA dataset.

A vast number of systems across the world use algorithmic decision making (ADM) to (partially) automate decisions that have previously been made by humans. When designed well, these systems promise more objective decisions while saving large amounts of resources and freeing up human time. However, when ADM systems are not designed well, they can lead to unfair decisions which discriminate against societal groups. The downstream effects of ADMs critically depend on the decisions made during the systems' design and implementation, as biases in data can be mitigated or reinforced along the modeling pipeline. Many of these design decisions are made implicitly, without knowing exactly how they will influence the final system. It is therefore important to make explicit the decisions made during the design of ADM systems and understand how these decisions affect the fairness of the resulting system. To study this issue, we draw on insights from the field of psychology and introduce the method of multiverse analysis for algorithmic fairness. In our proposed method, we turn implicit design decisions into explicit ones and demonstrate their fairness implications. By combining decisions, we create a grid of all possible "universes" of decision combinations. For each of these universes, we compute metrics of fairness and performance. Using the resulting dataset, one can see how and which decisions impact fairness. We demonstrate how multiverse analyses can be used to better understand variability and robustness of algorithmic fairness using an exemplary case study of predicting public health coverage of vulnerable populations for potential interventions. Our results illustrate how decisions during the design of a machine learning system can have surprising effects on its fairness and how to detect these effects using multiverse analysis.

Real-time perception and motion planning are two crucial tasks for autonomous driving. While there are many research works focused on improving the performance of perception and motion planning individually, it is still not clear how a perception error may adversely impact the motion planning results. In this work, we propose a joint simulation framework with LiDAR-based perception and motion planning for real-time automated driving. Taking the sensor input from the CARLA simulator with additive noise, a LiDAR perception system is designed to detect and track all surrounding vehicles and to provide precise orientation and velocity information. Next, we introduce a new collision bound representation that relaxes the communication cost between the perception module and the motion planner. A novel collision checking algorithm is implemented using line intersection checking that is more efficient for long distance range in comparing to the traditional method of occupancy grid. We evaluate the joint simulation framework in CARLA for urban driving scenarios. Experiments show that our proposed automated driving system can execute at 25 Hz, which meets the real-time requirement. The LiDAR perception system has high accuracy within 20 meters when evaluated with the ground truth. The motion planning results in consistent safe distance keeping when tested in CARLA urban driving scenarios.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司