亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Laguerre spectral approximations play an important role in the development of efficient algorithms for problems in unbounded domains. In this paper, we present a comprehensive convergence rate analysis of Laguerre spectral approximations for analytic functions. By exploiting contour integral techniques from complex analysis, we prove that Laguerre projection and interpolation methods of degree $n$ converge at the root-exponential rate $O(\exp(-2\rho\sqrt{n}))$ with $\rho>0$ when the underlying function is analytic inside and on a parabola with focus at the origin and vertex at $z=-\rho^2$. As far as we know, this is the first rigorous proof of root-exponential convergence of Laguerre approximations for analytic functions. Several important applications of our analysis are also discussed, including Laguerre spectral differentiations, Gauss-Laguerre quadrature rules, the scaling factor and the Weeks method for the inversion of Laplace transform, and some sharp convergence rate estimates are derived. Numerical experiments are presented to verify the theoretical results.

相關內容

In this contribution we apply an adaptive model hierarchy, consisting of a full-order model, a reduced basis reduced order model, and a machine learning surrogate, to parametrized linear-quadratic optimal control problems. The involved reduced order models are constructed adaptively and are called in such a way that the model hierarchy returns an approximate solution of given accuracy for every parameter value. At the same time, the fastest model of the hierarchy is evaluated whenever possible and slower models are only queried if the faster ones are not sufficiently accurate. The performance of the model hierarchy is studied for a parametrized heat equation example with boundary value control.

The current study investigates the asymptotic spectral properties of a finite difference approximation of nonlocal Helmholtz equations with a Caputo fractional Laplacian and a variable coefficient wave number $\mu$, as it occurs when considering a wave propagation in complex media, characterized by nonlocal interactions and spatially varying wave speeds. More specifically, by using tools from Toeplitz and generalized locally Toeplitz theory, the present research delves into the spectral analysis of nonpreconditioned and preconditioned matrix-sequences. We report numerical evidences supporting the theoretical findings. Finally, open problems and potential extensions in various directions are presented and briefly discussed.

We consider the numerical behavior of the fixed-stress splitting method for coupled poromechanics as undrained regimes are approached. We explain that pressure stability is related to the splitting error of the scheme, not the fact that the discrete saddle point matrix never appears in the fixed-stress approach. This observation reconciles previous results regarding the pressure stability of the splitting method. Using examples of compositional poromechanics with application to geological CO$_2$ sequestration, we see that solutions obtained using the fixed-stress scheme with a low order finite element-finite volume discretization which is not inherently inf-sup stable can exhibit the same pressure oscillations obtained with the corresponding fully implicit scheme. Moreover, pressure jump stabilization can effectively remove these spurious oscillations in the fixed-stress setting, while also improving the efficiency of the scheme in terms of the number of iterations required at every time step to reach convergence.

By interpreting planar polynomial curves as complex-valued functions of a real parameter, an inner product, norm, metric function, and the notion of orthogonality may be defined for such curves. This approach is applied to the complex pre-image polynomials that generate planar Pythagorean-hodograph (PH) curves, to facilitate the implementation of bounded modifications of them that preserve their PH nature. The problems of bounded modifications under the constraint of fixed curve end points and end tangent directions, and of increasing the arc length of a PH curve by a prescribed amount, are also addressed.

The broad class of multivariate unified skew-normal (SUN) distributions has been recently shown to possess fundamental conjugacy properties. When used as priors for the vector of parameters in general probit, tobit, and multinomial probit models, these distributions yield posteriors that still belong to the SUN family. Although such a core result has led to important advancements in Bayesian inference and computation, its applicability beyond likelihoods associated with fully-observed, discretized, or censored realizations from multivariate Gaussian models remains yet unexplored. This article covers such an important gap by proving that the wider family of multivariate unified skew-elliptical (SUE) distributions, which extends SUNs to more general perturbations of elliptical densities, guarantees conjugacy for broader classes of models, beyond those relying on fully-observed, discretized or censored Gaussians. Such a result leverages the closure under linear combinations, conditioning and marginalization of SUE to prove that such a family is conjugate to the likelihood induced by general multivariate regression models for fully-observed, censored or dichotomized realizations from skew-elliptical distributions. This advancement substantially enlarges the set of models that enable conjugate Bayesian inference to general formulations arising from elliptical and skew-elliptical families, including the multivariate Student's t and skew-t, among others.

We consider the problem of sketching a set valuation function, which is defined as the expectation of a valuation function of independent random item values. We show that for monotone subadditive or submodular valuation functions satisfying a weak homogeneity condition, or certain other conditions, there exist discretized distributions of item values with $O(k\log(k))$ support sizes that yield a sketch valuation function which is a constant-factor approximation, for any value query for a set of items of cardinality less than or equal to $k$. The discretized distributions can be efficiently computed by an algorithm for each item's value distribution separately. Our results hold under conditions that accommodate a wide range of valuation functions arising in applications, such as the value of a team corresponding to the best performance of a team member, constant elasticity of substitution production functions exhibiting diminishing returns used in economics and consumer theory, and others. Sketch valuation functions are particularly valuable for finding approximate solutions to optimization problems such as best set selection and welfare maximization. They enable computationally efficient evaluation of approximate value oracle queries and provide an approximation guarantee for the underlying optimization problem.

Quantization for a Borel probability measure refers to the idea of estimating a given probability by a discrete probability with support containing a finite number of elements. In this paper, we have considered a Borel probability measure $P$ on $\mathbb R^2$, which has support a nonuniform stretched Sierpi\'{n}ski triangle generated by a set of three contractive similarity mappings on $\mathbb R^2$. For this probability measure, we investigate the optimal sets of $n$-means and the $n$th quantization errors for all positive integers $n$.

This work focuses on the numerical approximations of neutral stochastic delay differential equations with their drift and diffusion coefficients growing super-linearly with respect to both delay variables and state variables. Under generalized monotonicity conditions, we prove that the backward Euler method not only converges strongly in the mean square sense with order $1/2$, but also inherit the mean square exponential stability of the original equations. As a byproduct, we obtain the same results on convergence rate and exponential stability of the backward Euler method for stochastic delay differential equations with generalized monotonicity conditions. These theoretical results are finally supported by several numerical experiments.

Mesh-based Graph Neural Networks (GNNs) have recently shown capabilities to simulate complex multiphysics problems with accelerated performance times. However, mesh-based GNNs require a large number of message-passing (MP) steps and suffer from over-smoothing for problems involving very fine mesh. In this work, we develop a multiscale mesh-based GNN framework mimicking a conventional iterative multigrid solver, coupled with adaptive mesh refinement (AMR), to mitigate challenges with conventional mesh-based GNNs. We use the framework to accelerate phase field (PF) fracture problems involving coupled partial differential equations with a near-singular operator due to near-zero modulus inside the crack. We define the initial graph representation using all mesh resolution levels. We perform a series of downsampling steps using Transformer MP GNNs to reach the coarsest graph followed by upsampling steps to reach the original graph. We use skip connectors from the generated embedding during coarsening to prevent over-smoothing. We use Transfer Learning (TL) to significantly reduce the size of training datasets needed to simulate different crack configurations and loading conditions. The trained framework showed accelerated simulation times, while maintaining high accuracy for all cases compared to physics-based PF fracture model. Finally, this work provides a new approach to accelerate a variety of mesh-based engineering multiphysics problems

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司