While the semi-blind source separation-based acoustic echo cancellation (SBSS-AEC) has received much research attention due to its promising performance during double-talk compared to the traditional adaptive algorithms, it suffers from system latency and nonlinear distortions. To circumvent these drawbacks, the recently developed ideas on convolutive transfer function (CTF) approximation and nonlinear expansion have been used in the iterative projection (IP)-based semi-blind source separation (SBSS) algorithm. However, because of the introduction of CTF approximation and nonlinear expansion, this algorithm becomes computationally very expensive, which makes it difficult to implement in embedded systems. Thus, we attempt in this paper to improve this IP-based algorithm, thereby developing an element-wise iterative source steering (EISS) algorithm. In comparison with the IP-based SBSS algorithm, the proposed algorithm is computationally much more efficient, especially when the nonlinear expansion order is high and the length of the CTF filter is long. Meanwhile, its AEC performance is as good as that of IP-based SBSS.
This study focuses on how different modalities of human communication can be used to distinguish between healthy controls and subjects with schizophrenia who exhibit strong positive symptoms. We developed a multi-modal schizophrenia classification system using audio, video, and text. Facial action units and vocal tract variables were extracted as low-level features from video and audio respectively, which were then used to compute high-level coordination features that served as the inputs to the audio and video modalities. Context-independent text embeddings extracted from transcriptions of speech were used as the input for the text modality. The multi-modal system is developed by fusing a segment-to-session-level classifier for video and audio modalities with a text model based on a Hierarchical Attention Network (HAN) with cross-modal attention. The proposed multi-modal system outperforms the previous state-of-the-art multi-modal system by 8.53% in the weighted average F1 score.
Forecasts for key macroeconomic variables are almost always made simultaneously by the same organizations, presented together, and used together in policy analyses and decision-makings. It is therefore important to know whether the forecasters are skillful enough to forecast the future values of those variables. Here a method for joint evaluation of skill in directional forecasts of multiple variables is introduced. The method is simple to use and does not rely on complicated assumptions required by the conventional statistical methods for measuring accuracy of directional forecast. The data on GDP growth and inflation forecasts of three organizations from Thailand, namely, the Bank of Thailand, the Fiscal Policy Office, and the Office of the National Economic and Social Development Council as well as the actual data on GDP growth and inflation of Thailand between 2001 and 2021 are employed in order to demonstrate how the method could be used to evaluate the skills of forecasters in practice. The overall results indicate that these three organizations are somewhat skillful in forecasting the direction-of-changes of GDP growth and inflation when no band and a band of +/- 1 standard deviation of the forecasted outcome are considered. However, when a band of +/- 0.5% of the forecasted outcome is introduced, the skills in forecasting the direction-of-changes of GDP growth and inflation of these three organizations are, at best, little better than intelligent guess work.
Most of the existing Mendelian randomization (MR) methods are limited by the assumption of linear causality between exposure and outcome, and the development of new non-linear MR methods is highly desirable. We introduce two-stage prediction estimation and control function estimation from econometrics to MR and extend them to non-linear causality. We give conditions for parameter identification and theoretically prove the consistency and asymptotic normality of the estimates. We compare the two methods theoretically under both linear and non-linear causality. We also extend the control function estimation to a more flexible semi-parametric framework without detailed parametric specifications of causality. Extensive simulations numerically corroborate our theoretical results. Application to UK Biobank data reveals non-linear causal relationships between sleep duration and systolic/diastolic blood pressure.
Gene set analysis, a popular approach for analysing high-throughput gene expression data, aims to identify sets of genes that show enriched expression patterns between two conditions. In addition to the multitude of methods available for this task, users are typically left with many options when creating the required input and specifying the internal parameters of the chosen method. This flexibility can lead to uncertainty about the 'right' choice, further reinforced by a lack of evidence-based guidance. Especially when their statistical experience is scarce, this uncertainty might entice users to produce preferable results using a 'trial-and-error' approach. While it may seem unproblematic at first glance, this practice can be viewed as a form of 'cherry-picking' and cause an optimistic bias, rendering the results non-replicable on independent data. After this problem has attracted a lot of attention in the context of classical hypothesis testing, we now aim to raise awareness of such over-optimism in the different and more complex context of gene set analyses. We mimic a hypothetical researcher who systematically selects the analysis variants yielding their preferred results, thereby considering three distinct goals they might pursue. Using a selection of popular gene set analysis methods, we tweak the results in this way for two frequently used benchmark gene expression data sets. Our study indicates that the potential for over-optimism is particularly high for a group of methods frequently used despite being commonly criticised. We conclude by providing practical recommendations to counter over-optimism in research findings in gene set analysis and beyond.
This work has been motivated by a longitudinal data set on HIV CD4 T+ cell counts from Livingstone district, Zambia. The corresponding histogram plots indicate lack of symmetry in the marginal distributions and the pairwise scatter plots show non-elliptical dependence patterns. The standard linear mixed model for longitudinal data fails to capture these features. Thus it seems appropriate to consider a more general framework for modeling such data. In this article, we consider generalized linear mixed models (GLMM) for the marginals (e.g. Gamma mixed model), and temporal dependency of the repeated measurements is modeled by the copula corresponding to some skew-elliptical distributions (like skew-normal/skew-t). Our proposed class of copula based mixed models simultaneously takes into account asymmetry, between-subject variability and non-standard temporal dependence, and hence can be considered extensions to the standard linear mixed model based on multivariate normality. We estimate the model parameters using the IFM (inference function of margins) method, and also describe how to obtain standard errors of the parameter estimates. We investigate the finite sample performance of our procedure with extensive simulation studies involving skewed and symmetric marginal distributions and several choices of the copula. We finally apply our models to the HIV data set and report the findings.
Stochastic gradient descent with momentum (SGDM) has been widely used in many machine learning and statistical applications. Despite the observed empirical benefits of SGDM over traditional SGD, the theoretical understanding of the role of momentum for different learning rates in the optimization process remains widely open. We analyze the finite-sample convergence rate of SGDM under the strongly convex settings and show that, with a large batch size, the mini-batch SGDM converges faster than the mini-batch SGD to a neighborhood of the optimal value. Additionally, our findings, supported by theoretical analysis and numerical experiments, indicate that SGDM permits broader choices of learning rates. Furthermore, we analyze the Polyak-averaging version of the SGDM estimator, establish its asymptotic normality, and justify its asymptotic equivalence to the averaged SGD. The asymptotic distribution of the averaged SGDM enables uncertainty quantification of the algorithm output and statistical inference of the model parameters.
In recent years, deep learning has gained increasing popularity in the fields of Partial Differential Equations (PDEs) and Reduced Order Modeling (ROM), providing domain practitioners with new powerful data-driven techniques such as Physics-Informed Neural Networks (PINNs), Neural Operators, Deep Operator Networks (DeepONets) and Deep-Learning based ROMs (DL-ROMs). In this context, deep autoencoders based on Convolutional Neural Networks (CNNs) have proven extremely effective, outperforming established techniques, such as the reduced basis method, when dealing with complex nonlinear problems. However, despite the empirical success of CNN-based autoencoders, there are only a few theoretical results supporting these architectures, usually stated in the form of universal approximation theorems. In particular, although the existing literature provides users with guidelines for designing convolutional autoencoders, the subsequent challenge of learning the latent features has been barely investigated. Furthermore, many practical questions remain unanswered, e.g., the number of snapshots needed for convergence or the neural network training strategy. In this work, using recent techniques from sparse high-dimensional function approximation, we fill some of these gaps by providing a new practical existence theorem for CNN-based autoencoders when the parameter-to-solution map is holomorphic. This regularity assumption arises in many relevant classes of parametric PDEs, such as the parametric diffusion equation, for which we discuss an explicit application of our general theory.
We propose a new numerical domain decomposition method for solving elliptic equations on compact Riemannian manifolds. One advantage of this method is its ability to bypass the need for global triangulations or grids on the manifolds. Additionally, it features a highly parallel iterative scheme. To verify its efficacy, we conduct numerical experiments on some $4$-dimensional manifolds without and with boundary.
AI-enabled synthetic biology has tremendous potential but also significantly increases biorisks and brings about a new set of dual use concerns. The picture is complicated given the vast innovations envisioned to emerge by combining emerging technologies, as AI-enabled synthetic biology potentially scales up bioengineering into industrial biomanufacturing. However, the literature review indicates that goals such as maintaining a reasonable scope for innovation, or more ambitiously to foster a huge bioeconomy don't necessarily contrast with biosafety, but need to go hand in hand. This paper presents a literature review of the issues and describes emerging frameworks for policy and practice that transverse the options of command-and control, stewardship, bottom-up, and laissez-faire governance. How to achieve early warning systems that enable prevention and mitigation of future AI-enabled biohazards from the lab, from deliberate misuse, or from the public realm, will constantly need to evolve, and adaptive, interactive approaches should emerge. Although biorisk is subject to an established governance regime, and scientists generally adhere to biosafety protocols, even experimental, but legitimate use by scientists could lead to unexpected developments. Recent advances in chatbots enabled by generative AI have revived fears that advanced biological insight can more easily get into the hands of malignant individuals or organizations. Given these sets of issues, society needs to rethink how AI-enabled synthetic biology should be governed. The suggested way to visualize the challenge at hand is whack-a-mole governance, although the emerging solutions are perhaps not so different either.
Effect modification occurs when the impact of the treatment on an outcome varies based on the levels of other covariates known as effect modifiers. Modeling of these effect differences is important for etiological goals and for purposes of optimizing treatment. Structural nested mean models (SNMMs) are useful causal models for estimating the potentially heterogeneous effect of a time-varying exposure on the mean of an outcome in the presence of time-varying confounding. In longitudinal health studies, information on many demographic, behavioural, biological, and clinical covariates may be available, among which some might cause heterogeneous treatment effects. A data-driven approach for selecting the effect modifiers of an exposure may be necessary if these effect modifiers are \textit{a priori} unknown and need to be identified. Although variable selection techniques are available in the context of estimating conditional average treatment effects using marginal structural models, or in the context of estimating optimal dynamic treatment regimens, all of these methods consider an outcome measured at a single point in time. In the context of an SNMM for repeated outcomes, we propose a doubly robust penalized G-estimator for the causal effect of a time-varying exposure with a simultaneous selection of effect modifiers and prove the oracle property of our estimator. We conduct a simulation study to evaluate the performance of the proposed estimator in finite samples and for verification of its double-robustness property. Our work is motivated by a study of hemodiafiltration for treating patients with end-stage renal disease at the Centre Hospitalier de l'Universit\'e de Montr\'eal.