In this paper, we present a multiscale framework for solving the Helmholtz equation in heterogeneous media without scale separation and in the high frequency regime where the wavenumber $k$ can be large. The main innovation is that our methods achieve a nearly exponential rate of convergence with respect to the computational degrees of freedom, using a coarse grid of mesh size $O(1/k)$ without suffering from the well-known pollution effect. The key idea is a non-overlapped domain decomposition and its associated coarse-fine scale decomposition of the solution space that adapts to the media property and wavenumber; this decomposition is inspired by the multiscale finite element method (MsFEM). We show that the coarse part is of \textit{low complexity} in the sense that it can be approximated with a nearly exponential rate of convergence via local basis functions, due to the compactness of a restriction operator that maps Helmholtz-harmonic functions to their interpolation residues on edges, while the fine part is \textit{local} such that it can be computed efficiently using the local information of the right hand side. The combination of the two parts yields the overall nearly exponential rate of convergence of our multiscale method. Our method draws many connections to multiscale methods in the literature, which we will comment in detail. We demonstrate the effectiveness of our methods theoretically and numerically; an exponential rate of convergence is consistently observed and confirmed. In addition, we observe the robustness of our methods regarding the high contrast in the media numerically. We specifically focus on 2D problems in our exposition since the geometry of non-overlapped domain decomposition is simplest to explain in such cases; generalizations to 3D will be outlined at the end.
We prove mean-square convergence of a novel numerical method, the tamed-splitting method, for a generalized Ait-Sahalia interest rate model. The method is based on a Lamperti transform, splitting and applying a tamed numerical method for the nonlinearity. The main difficulty in the analysis is caused by the non-globally Lipschitz drift coefficients of the model. We examine the existence, uniqueness of the solution and boundedness of moments for the transformed SDE.We then prove bounded moments and inverses moments for the numerical approximation. The tamed-splitting method is a hybrid method in the sense that a backstop method is invoked to prevent solutions from overshooting zero and becoming negative. We successfully recover the mean-square convergence rate of order one for the tamed-splitting method. In addition we prove that the probability of ever needing the backstop method to prevent a negative value can be made arbitrarily small. In our numerical experiments we compare to other numerical methods in the literature for realistic parameter values.
We consider the constrained Linear Inverse Problem (LIP), where a certain atomic norm (like the $\ell_1 $ and the Nuclear norm) is minimized subject to a quadratic constraint. Typically, such cost functions are non-differentiable which makes them not amenable to the fast optimization methods existing in practice. We propose two equivalent reformulations of the constrained LIP with improved convex regularity: (i) a smooth convex minimization problem, and (ii) a strongly convex min-max problem. These problems could be solved by applying existing acceleration based convex optimization methods which provide better \mmode{ O \left( \nicefrac{1}{k^2} \right) } theoretical convergence guarantee. However, to fully exploit the utility of these reformulations, we also provide a novel algorithm, to which we refer as the Fast Linear Inverse Problem Solver (FLIPS), that is tailored to solve the reformulation of the LIP. We demonstrate the performance of FLIPS on the sparse coding problem arising in image processing tasks. In this setting, we observe that FLIPS consistently outperforms the Chambolle-Pock and C-SALSA algorithms--two of the current best methods in the literature.
We provide a concise review of the exponentially convergent multiscale finite element method (ExpMsFEM) for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave propagation. ExpMsFEM is built on the non-overlapped domain decomposition in the classical MsFEM while enriching the approximation space systematically to achieve a nearly exponential convergence rate regarding the number of basis functions. Unlike most generalizations of MsFEM in the literature, ExpMsFEM does not rely on any partition of unity functions. In general, it is necessary to use function representations dependent on the right-hand side to break the algebraic Kolmogorov $n$-width barrier to achieve exponential convergence. Indeed, there are online and offline parts in the function representation provided by ExpMsFEM. The online part depends on the right-hand side locally and can be computed in parallel efficiently. The offline part contains basis functions that are used in the Galerkin method to assemble the stiffness matrix; they are all independent of the right-hand side, so the stiffness matrix can be used repeatedly in multi-query scenarios.
In this paper, we study the almost sure boundedness and the convergence of the stochastic approximation (SA) algorithm. At present, most available convergence proofs are based on the ODE method, and the almost sure boundedness of the iterations is an assumption and not a conclusion. In Borkar-Meyn (2000), it is shown that if the ODE has only one globally attractive equilibrium, then under additional assumptions, the iterations are bounded almost surely, and the SA algorithm converges to the desired solution. Our objective in the present paper is to provide an alternate proof of the above, based on martingale methods, which are simpler and less technical than those based on the ODE method. As a prelude, we prove a new sufficient condition for the global asymptotic stability of an ODE. Next we prove a ``converse'' Lyapunov theorem on the existence of a suitable Lyapunov function with a globally bounded Hessian, for a globally exponentially stable system. Both theorems are of independent interest to researchers in stability theory. Then, using these results, we provide sufficient conditions for the almost sure boundedness and the convergence of the SA algorithm. We show through examples that our theory covers some situations that are not covered by currently known results, specifically Borkar-Meyn (2000).
We study the problem of learning unknown parameters in stochastic interacting particle systems with polynomial drift, interaction and diffusion functions from the path of one single particle in the system. Our estimator is obtained by solving a linear system which is constructed by imposing appropriate conditions on the moments of the invariant distribution of the mean field limit and on the quadratic variation of the process. Our approach is easy to implement as it only requires the approximation of the moments via the ergodic theorem and the solution of a low-dimensional linear system. Moreover, we prove that our estimator is asymptotically unbiased in the limits of infinite data and infinite number of particles (mean field limit). In addition, we present several numerical experiments that validate the theoretical analysis and show the effectiveness of our methodology to accurately infer parameters in systems of interacting particles.
Multivariate Hawkes processes are temporal point processes extensively applied to model event data with dependence on past occurrences and interaction phenomena. In the generalised nonlinear model, positive and negative interactions between the components of the process are allowed, therefore accounting for so-called excitation and inhibition effects. In the nonparametric setting, learning the temporal dependence structure of Hawkes processes is often a computationally expensive task, all the more with Bayesian estimation methods. In general, the posterior distribution in the nonlinear Hawkes model is non-conjugate and doubly intractable. Moreover, existing Monte-Carlo Markov Chain methods are often slow and not scalable to high-dimensional processes in practice. Recently, efficient algorithms targeting a mean-field variational approximation of the posterior distribution have been proposed. In this work, we unify existing variational Bayes inference approaches under a general framework, that we theoretically analyse under easily verifiable conditions on the prior, the variational class, and the model. We notably apply our theory to a novel spike-and-slab variational class, that can induce sparsity through the connectivity graph parameter of the multivariate Hawkes model. Then, in the context of the popular sigmoid Hawkes model, we leverage existing data augmentation technique and design adaptive and sparsity-inducing mean-field variational methods. In particular, we propose a two-step algorithm based on a thresholding heuristic to select the graph parameter. Through an extensive set of numerical simulations, we demonstrate that our approach enjoys several benefits: it is computationally efficient, can reduce the dimensionality of the problem by selecting the graph parameter, and is able to adapt to the smoothness of the underlying parameter.
Multiscale Finite Element Methods (MsFEMs) are now well-established finite element type approaches dedicated to multiscale problems. They first compute local, oscillatory, problem-dependent basis functions that generate a suitable discretization space, and next perform a Galerkin approximation of the problem on that space. We investigate here how these approaches can be implemented in a non-intrusive way, in order to facilitate their dissemination within industrial codes or non-academic environments. We develop an abstract framework that covers a wide variety of MsFEMs for linear second-order partial differential equations. Non-intrusive MsFEM approaches are developed within the full generality of this framework, which may moreover be beneficial to steering software development and improving the theoretical understanding and analysis of MsFEMs.
The opacity of FRTE depends on not only the material temperature but also the frequency, whose values may vary several orders of magnitude for different frequencies. The gray radiation diffusion and frequency-dependent diffusion equations are two simplified models that can approximate the solution to FRTE in the thick opacity regime. The frequency discretization for the two limit models highly affects the numerical accuracy. However, classical frequency discretization for FRTE considers only the absorbing coefficient. In this paper, we propose a new decomposed multi-group method for frequency discretization that is not only AP in both gray radiation diffusion and frequency-dependent diffusion limits, but also the frequency discretization of the limiting models can be tuned. Based on the decomposed multi-group method, a full AP scheme in frequency, time, and space is proposed. Several numerical examples are used to verify the performance of the proposed scheme.
Two combined numerical methods for solving time-varying semilinear differential-algebraic equations (DAEs) are obtained. These equations are also called degenerate DEs, descriptor systems, operator-differential equations and DEs on manifolds. The convergence and correctness of the methods are proved. When constructing methods we use, in particular, time-varying spectral projectors which can be numerically found. This enables to numerically solve and analyze the considered DAE in the original form without additional analytical transformations. To improve the accuracy of the second method, recalculation (a ``predictor-corrector'' scheme) is used. Note that the developed methods are applicable to the DAEs with the continuous nonlinear part which may not be continuously differentiable in $t$, and that the restrictions of the type of the global Lipschitz condition, including the global condition of contractivity, are not used in the theorems on the global solvability of the DAEs and on the convergence of the numerical methods. This enables to use the developed methods for the numerical solution of more general classes of mathematical models. For example, the functions of currents and voltages in electric circuits may not be differentiable or may be approximated by nondifferentiable functions. Presented conditions for the global solvability of the DAEs ensure the existence of an unique exact global solution for the corresponding initial value problem, which enables to compute approximate solutions on any given time interval (provided that the conditions of theorems or remarks on the convergence of the methods are fulfilled). In the paper, the numerical analysis of the mathematical model for a certain electrical circuit, which demonstrates the application of the presented theorems and numerical methods, is carried out.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.