亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The opacity of FRTE depends on not only the material temperature but also the frequency, whose values may vary several orders of magnitude for different frequencies. The gray radiation diffusion and frequency-dependent diffusion equations are two simplified models that can approximate the solution to FRTE in the thick opacity regime. The frequency discretization for the two limit models highly affects the numerical accuracy. However, classical frequency discretization for FRTE considers only the absorbing coefficient. In this paper, we propose a new decomposed multi-group method for frequency discretization that is not only AP in both gray radiation diffusion and frequency-dependent diffusion limits, but also the frequency discretization of the limiting models can be tuned. Based on the decomposed multi-group method, a full AP scheme in frequency, time, and space is proposed. Several numerical examples are used to verify the performance of the proposed scheme.

相關內容

This paper is devoted to the construction and analysis of immersed finite element (IFE) methods in three dimensions. Different from the 2D case, the points of intersection of the interface and the edges of a tetrahedron are usually not coplanar, which makes the extension of the original 2D IFE methods based on a piecewise linear approximation of the interface to the 3D case not straightforward. We address this coplanarity issue by an approach where the interface is approximated via discrete level set functions. This approach is very convenient from a computational point of view since in many practical applications the exact interface is often unknown, and only a discrete level set function is available. As this approach has also not be considered in the 2D IFE methods, in this paper we present a unified framework for both 2D and 3D cases. We consider an IFE method based on the traditional Crouzeix-Raviart element using integral values on faces as degrees of freedom. The novelty of the proposed IFE is the unisolvence of basis functions on arbitrary triangles/tetrahedrons without any angle restrictions even for anisotropic interface problems, which is advantageous over the IFE using nodal values as degrees of freedom. The optimal bounds for the IFE interpolation errors are proved on shape-regular triangulations. For the IFE method, optimal a priori error and condition number estimates are derived with constants independent of the location of the interface with respect to the unfitted mesh. The extension to anisotropic interface problems with tensor coefficients is also discussed. Numerical examples supporting the theoretical results are provided.

Differing from the well-developed horizontal object detection area whereby the computing-friendly IoU based loss is readily adopted and well fits with the detection metrics. In contrast, rotation detectors often involve a more complicated loss based on SkewIoU which is unfriendly to gradient-based training. In this paper, we propose an effective approximate SkewIoU loss based on Gaussian modeing and Kalman filter, which mainly consists of two items. The first term is a scale-insensitive center point loss, which is used to quickly get the center points between bounding boxes closer to assist the second term. In the distance-independent second term, Kalman filter is adopted to inherently mimic the mechanism of SkewIoU by its definition, and show its alignment with the SkewIoU loss at trend-level within a certain distance (i.e. within 9 pixels). This is in contrast to recent Gaussian modeling based rotation detectors e.g. GWD loss and KLD loss that involve a human-specified distribution distance metric which require additional hyperparameter tuning that vary across datasets and detectors. The resulting new loss called KFIoU loss is easier to implement and works better compared with exact SkewIoU loss, thanks to its full differentiability and ability to handle the non-overlapping cases. We further extend our technique to the 3-D case which also suffers from the same issues as 2-D detection. Extensive results on various public datasets (2-D/3-D, aerial/text/face images) with different base detectors show the effectiveness of our approach.

We expect the generalization error to improve with more samples from a similar task, and to deteriorate with more samples from an out-of-distribution (OOD) task. In this work, we show a counter-intuitive phenomenon: the generalization error of a task can be a non-monotonic function of the number of OOD samples. As the number of OOD samples increases, the generalization error on the target task improves before deteriorating beyond a threshold. In other words, there is value in training on small amounts of OOD data. We use Fisher's Linear Discriminant on synthetic datasets and deep networks on computer vision benchmarks such as MNIST, CIFAR-10, CINIC-10, PACS and DomainNet to demonstrate and analyze this phenomenon. In the idealistic setting where we know which samples are OOD, we show that these non-monotonic trends can be exploited using an appropriately weighted objective of the target and OOD empirical risk. While its practical utility is limited, this does suggest that if we can detect OOD samples, then there may be ways to benefit from them. When we do not know which samples are OOD, we show how a number of go-to strategies such as data-augmentation, hyper-parameter optimization, and pre-training are not enough to ensure that the target generalization error does not deteriorate with the number of OOD samples in the dataset.

Spiking neural networks (SNNs) with event-based computation are promising brain-inspired models for energy-efficient applications on neuromorphic hardware. However, most supervised SNN training methods, such as conversion from artificial neural networks or direct training with surrogate gradients, require complex computation rather than spike-based operations of spiking neurons during training. In this paper, we study spike-based implicit differentiation on the equilibrium state (SPIDE) that extends the recently proposed training method, implicit differentiation on the equilibrium state (IDE), for supervised learning with purely spike-based computation, which demonstrates the potential for energy-efficient training of SNNs. Specifically, we introduce ternary spiking neuron couples and prove that implicit differentiation can be solved by spikes based on this design, so the whole training procedure, including both forward and backward passes, is made as event-driven spike computation, and weights are updated locally with two-stage average firing rates. Then we propose to modify the reset membrane potential to reduce the approximation error of spikes. With these key components, we can train SNNs with flexible structures in a small number of time steps and with firing sparsity during training, and the theoretical estimation of energy costs demonstrates the potential for high efficiency. Meanwhile, experiments show that even with these constraints, our trained models can still achieve competitive results on MNIST, CIFAR-10, CIFAR-100, and CIFAR10-DVS. Our code is available at //github.com/pkuxmq/SPIDE-FSNN.

We analyze the inductive bias of gradient descent for weight normalized smooth homogeneous neural nets, when trained on exponential or cross-entropy loss. We analyse both standard weight normalization (SWN) and exponential weight normalization (EWN), and show that the gradient flow path with EWN is equivalent to gradient flow on standard networks with an adaptive learning rate. We extend these results to gradient descent, and establish asymptotic relations between weights and gradients for both SWN and EWN. We also show that EWN causes weights to be updated in a way that prefers asymptotic relative sparsity. For EWN, we provide a finite-time convergence rate of the loss with gradient flow and a tight asymptotic convergence rate with gradient descent. We demonstrate our results for SWN and EWN on synthetic data sets. Experimental results on simple datasets support our claim on sparse EWN solutions, even with SGD. This demonstrates its potential applications in learning neural networks amenable to pruning.

We develop a novel computational framework to approximate solution operators of evolution partial differential equations (PDEs). By employing a general nonlinear reduced-order model, such as a deep neural network, to approximate the solution of a given PDE, we realize that the evolution of the model parameter is a control problem in the parameter space. Based on this observation, we propose to approximate the solution operator of the PDE by learning the control vector field in the parameter space. From any initial value, this control field can steer the parameter to generate a trajectory such that the corresponding reduced-order model solves the PDE. This allows for substantially reduced computational cost to solve the evolution PDE with arbitrary initial conditions. We also develop comprehensive error analysis for the proposed method when solving a large class of semilinear parabolic PDEs. Numerical experiments on different high-dimensional evolution PDEs with various initial conditions demonstrate the promising results of the proposed method.

Numerical approximations of partial differential equations (PDEs) are routinely employed to formulate the solution of physics, engineering and mathematical problems involving functions of several variables, such as the propagation of heat or sound, fluid flow, elasticity, electrostatics, electrodynamics, and more. While this has led to solving many complex phenomena, there are still significant limitations. Conventional approaches such as Finite Element Methods (FEMs) and Finite Differential Methods (FDMs) require considerable time and are computationally expensive. In contrast, machine learning-based methods such as neural networks are faster once trained, but tend to be restricted to a specific discretization. This article aims to provide a comprehensive summary of conventional methods and recent machine learning-based methods to approximate PDEs numerically. Furthermore, we highlight several key architectures centered around the neural operator, a novel and fast approach (1000x) to learning the solution operator of a PDE. We will note how these new computational approaches can bring immense advantages in tackling many problems in fundamental and applied physics.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司