亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We analyze the inductive bias of gradient descent for weight normalized smooth homogeneous neural nets, when trained on exponential or cross-entropy loss. We analyse both standard weight normalization (SWN) and exponential weight normalization (EWN), and show that the gradient flow path with EWN is equivalent to gradient flow on standard networks with an adaptive learning rate. We extend these results to gradient descent, and establish asymptotic relations between weights and gradients for both SWN and EWN. We also show that EWN causes weights to be updated in a way that prefers asymptotic relative sparsity. For EWN, we provide a finite-time convergence rate of the loss with gradient flow and a tight asymptotic convergence rate with gradient descent. We demonstrate our results for SWN and EWN on synthetic data sets. Experimental results on simple datasets support our claim on sparse EWN solutions, even with SGD. This demonstrates its potential applications in learning neural networks amenable to pruning.

相關內容

Empirical studies of the loss landscape of deep networks have revealed that many local minima are connected through low-loss valleys. Yet, little is known about the theoretical origin of such valleys. We present a general framework for finding continuous symmetries in the parameter space, which carve out low-loss valleys. Our framework uses equivariances of the activation functions and can be applied to different layer architectures. To generalize this framework to nonlinear neural networks, we introduce a novel set of nonlinear, data-dependent symmetries. These symmetries can transform a trained model such that it performs similarly on new samples, which allows ensemble building that improves robustness under certain adversarial attacks. We then show that conserved quantities associated with linear symmetries can be used to define coordinates along low-loss valleys. The conserved quantities help reveal that using common initialization methods, gradient flow only explores a small part of the global minimum. By relating conserved quantities to convergence rate and sharpness of the minimum, we provide insights on how initialization impacts convergence and generalizability.

Latent confounding has been a long-standing obstacle for causal reasoning from observational data. One popular approach is to model the data using acyclic directed mixed graphs (ADMGs), which describe ancestral relations between variables using directed and bidirected edges. However, existing methods using ADMGs are based on either linear functional assumptions or a discrete search that is complicated to use and lacks computational tractability for large datasets. In this work, we further extend the existing body of work and develop a novel gradient-based approach to learning an ADMG with non-linear functional relations from observational data. We first show that the presence of latent confounding is identifiable under the assumptions of bow-free ADMGs with non-linear additive noise models. With this insight, we propose a novel neural causal model based on autoregressive flows for ADMG learning. This not only enables us to determine complex causal structural relationships behind the data in the presence of latent confounding, but also estimate their functional relationships (hence treatment effects) simultaneously. We further validate our approach via experiments on both synthetic and real-world datasets, and demonstrate the competitive performance against relevant baselines.

Three asymptotic limits exist for the Euler equations at low Mach number - purely convective, purely acoustic, and mixed convective-acoustic. Standard collocated density-based numerical schemes for compressible flow are known to fail at low Mach number due to the incorrect asymptotic scaling of the artificial diffusion. Previous studies of this class of schemes have shown a variety of behaviours across the different limits and proposed guidelines for the design of low-Mach schemes. However, these studies have primarily focused on specific discretisations and/or only the convective limit. In this paper, we review the low-Mach behaviour using the modified equations - the continuous Euler equations augmented with artificial diffusion terms - which are representative of a wide range of schemes in this class. By considering both convective and acoustic effects, we show that three diffusion scalings naturally arise. Single- and multiple-scale asymptotic analysis of these scalings shows that many of the important low-Mach features of this class of schemes can be reproduced in a straightforward manner in the continuous setting. As an example, we show that many existing low-Mach Roe-type finite-volume schemes match one of these three scalings. Our analysis corroborates previous analysis of these schemes, and we are able to refine previous guidelines on the design of low-Mach schemes by including both convective and acoustic effects. Discrete analysis and numerical examples demonstrate the behaviour of minimal Roe-type schemes with each of the three scalings for convective, acoustic, and mixed flows.

When dealing with deep neural network (DNN) applications on edge devices, continuously updating the model is important. Although updating a model with real incoming data is ideal, using all of them is not always feasible due to limits, such as labeling and communication costs. Thus, it is necessary to filter and select the data to use for training (i.e., active learning) on the device. In this paper, we formalize a practical active learning problem for DNNs on edge devices and propose a general task-agnostic framework to tackle this problem, which reduces it to a stream submodular maximization. This framework is light enough to be run with low computational resources, yet provides solutions whose quality is theoretically guaranteed thanks to the submodular property. Through this framework, we can configure data selection criteria flexibly, including using methods proposed in previous active learning studies. We evaluate our approach on both classification and object detection tasks in a practical setting to simulate a real-life scenario. The results of our study show that the proposed framework outperforms all other methods in both tasks, while running at a practical speed on real devices.

It is a widely observed phenomenon in nonparametric statistics that rate-optimal estimators balance bias and stochastic error. The recent work on overparametrization raises the question whether rate-optimal estimators exist that do not obey this trade-off. In this work we consider pointwise estimation in the Gaussian white noise model with $\beta$-H\"older smooth regression function f. It is shown that an estimator with worst-case bias $\lesssim n^{-\beta/(2\beta+1)}=: \psi_n$ must necessarily also have a worst-case mean absolute deviation that is lower bounded by $\gtrsim \psi_n.$ This proves that any estimator achieving the minimax optimal pointwise estimation rate $\psi_n$ must necessarily balance worst-case bias and worst-case mean absolute deviation. To derive the result, we establish an abstract inequality relating the change of expectation for two probability measures to the mean absolute deviation.

We analyze stochastic gradient descent (SGD) type algorithms on a high-dimensional sphere which is parameterized by a neural network up to a normalization constant. We provide a new algorithm for the setting of supervised learning and show its convergence both theoretically and numerically. We also provide the first proof of convergence for the unsupervised setting, which corresponds to the widely used variational Monte Carlo (VMC) method in quantum physics.

A fully discrete energy stability analysis is carried out for linear advection-diffusion problems discretized by generalized upwind summation-by-parts~(upwind gSBP) schemes in space and implicit-explicit Runge-Kutta~(IMEX-RK) schemes in time. Hereby, advection terms are discretized explicitly while diffusion terms are solved implicitly. In this context, specific combinations of space and time discretizations enjoy enhanced stability properties. In fact, if the first and second-derivative upwind gSBP operators fulfill a compatibility condition, the allowable time step size is independent of grid refinement, although the advective terms are discretized explicitly. In one space dimension it is shown that upwind gSBP schemes represent a general framework including standard discontinuous Galerkin~(DG) schemes on a global level. While previous work for DG schemes has demonstrated that the combination of upwind advection fluxes and the central-type first Bassi-Rebay~(BR1) scheme for diffusion does not allow for grid-independent stable time steps, the current work shows that central advection fluxes are compatible with BR1 regarding enhanced stability of IMEX time stepping. Furthermore, unlike previous discrete energy stability investigations for DG schemes, the present analysis is based on the discrete energy provided by the corresponding SBP norm matrix and yields time step restrictions independent of the discretization order in space since no finite-element-type inverse constants are involved. Numerical experiments are provided confirming these theoretical findings.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司