亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A fully discrete energy stability analysis is carried out for linear advection-diffusion problems discretized by generalized upwind summation-by-parts~(upwind gSBP) schemes in space and implicit-explicit Runge-Kutta~(IMEX-RK) schemes in time. Hereby, advection terms are discretized explicitly while diffusion terms are solved implicitly. In this context, specific combinations of space and time discretizations enjoy enhanced stability properties. In fact, if the first and second-derivative upwind gSBP operators fulfill a compatibility condition, the allowable time step size is independent of grid refinement, although the advective terms are discretized explicitly. In one space dimension it is shown that upwind gSBP schemes represent a general framework including standard discontinuous Galerkin~(DG) schemes on a global level. While previous work for DG schemes has demonstrated that the combination of upwind advection fluxes and the central-type first Bassi-Rebay~(BR1) scheme for diffusion does not allow for grid-independent stable time steps, the current work shows that central advection fluxes are compatible with BR1 regarding enhanced stability of IMEX time stepping. Furthermore, unlike previous discrete energy stability investigations for DG schemes, the present analysis is based on the discrete energy provided by the corresponding SBP norm matrix and yields time step restrictions independent of the discretization order in space since no finite-element-type inverse constants are involved. Numerical experiments are provided confirming these theoretical findings.

相關內容

We consider alternating gradient descent (AGD) with fixed step size $\eta > 0$, applied to the asymmetric matrix factorization objective. We show that, for a rank-$r$ matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, $T = \left( \left(\frac{\sigma_1(\mathbf{A})}{\sigma_r(\mathbf{A})}\right)^2 \log(1/\epsilon)\right)$ iterations of alternating gradient descent suffice to reach an $\epsilon$-optimal factorization $\| \mathbf{A} - \mathbf{X}_T^{\vphantom{\intercal}} \mathbf{Y}_T^{\intercal} \|_{\rm F}^2 \leq \epsilon \| \mathbf{A} \|_{\rm F}^2$ with high probability starting from an atypical random initialization. The factors have rank $d>r$ so that $\mathbf{X}_T\in\mathbb{R}^{m \times d}$ and $\mathbf{Y}_T \in\mathbb{R}^{n \times d}$. Experiments suggest that our proposed initialization is not merely of theoretical benefit, but rather significantly improves convergence of gradient descent in practice. Our proof is conceptually simple: a uniform PL-inequality and uniform Lipschitz smoothness constant are guaranteed for a sufficient number of iterations, starting from our random initialization. Our proof method should be useful for extending and simplifying convergence analyses for a broader class of nonconvex low-rank factorization problems.

Boundary value problems based on the convection-diffusion equation arise naturally in models of fluid flow across a variety of engineering applications and design feasibility studies. Naturally, their efficient numerical solution has continued to be an interesting and active topic of research for decades. In the context of finite-element discretization of these boundary value problems, the Streamline Upwind Petrov-Galerkin (SUPG) technique yields accurate discretization in the singularly perturbed regime. In this paper, we propose efficient multigrid iterative solution methods for the resulting linear systems. In particular, we show that techniques from standard multigrid for anisotropic problems can be adapted to these discretizations on both tensor-product as well as semi-structured meshes. The resulting methods are demonstrated to be robust preconditioners for several standard flow benchmarks.

In this work, two Crank-Nicolson schemes without corrections are developed for sub-diffusion equations. First, we propose a Crank-Nicolson scheme without correction for problems with regularity assumptions only on the source term. Second, since the existing Crank-Nicolson schemes have a severe reduction of convergence order for solving sub-diffusion equations with singular source terms in time, we then extend our scheme and propose a new Crank-Nicolson scheme for problems with singular source terms in time. Second-order error estimates for both the two Crank-Nicolson schemes are rigorously established by a Laplace transform technique, which are numerically verified by some numerical examples.

The past decades have witnessed an increasing interest in spiking neural networks due to their great potential of modeling time-dependent data. Many empirical algorithms and techniques have been developed. However, theoretically, it remains unknown whether and to what extent a trained spiking neural network performs well on unseen data. This work takes one step in this direction by exploiting the minimum description length principle and thus, presents an explicit generalization bound for spiking neural networks. Further, we implement the description length of SNNs through structural stability and specify the lower and upper bounds of the maximum number of stable bifurcation solutions, which convert the challenge of qualifying structural stability in SNNs into a mathematical problem with quantitative properties.

In this article, we propose high-order finite-difference entropy stable schemes for the two-fluid relativistic plasma flow equations. This is achieved by exploiting the structure of the equations, which consists of three independent flux components. The first two components describe the ion and electron flows, which are modeled using the relativistic hydrodynamics equation. The third component is Maxwell's equations, which are linear systems. The coupling of the ion and electron flows, and electromagnetic fields is via source terms only. Furthermore, we also show that the source terms do not affect the entropy evolution. To design semi-discrete entropy stable schemes, we extend the RHD entropy stable schemes in Bhoriya et al. to three dimensions. This is then coupled with entropy stable discretization of the Maxwell's equations. Finally, we use SSP-RK schemes to discretize in time. We also propose ARK-IMEX schemes to treat the stiff source terms; the resulting nonlinear set of algebraic equations is local (at each discretization point). These equations are solved using the Newton's Method, which results in an efficient method. The proposed schemes are then tested using various test problems to demonstrate their stability, accuracy and efficiency.

In this paper, we are interested in constructing a scheme solving compressible Navier--Stokes equations, with desired properties including high order spatial accuracy, conservation, and positivity-preserving of density and internal energy under a standard hyperbolic type CFL constraint on the time step size, e.g., $\Delta t=\mathcal O(\Delta x)$. Strang splitting is used to approximate convection and diffusion operators separately. For the convection part, i.e., the compressible Euler equation, the high order accurate postivity-preserving Runge--Kutta discontinuous Galerkin method can be used. For the diffusion part, the equation of internal energy instead of the total energy is considered, and a first order semi-implicit time discretization is used for the ease of achieving positivity. A suitable interior penalty discontinuous Galerkin method for the stress tensor can ensure the conservation of momentum and total energy for any high order polynomial basis. In particular, positivity can be proven with $\Delta t=\mathcal{O}(\Delta x)$ if the Laplacian operator of internal energy is approximated by the $\mathbb{Q}^k$ spectral element method with $k=1,2,3$. So the full scheme with $\mathbb{Q}^k$ ($k=1,2,3$) basis is conservative and positivity-preserving with $\Delta t=\mathcal{O}(\Delta x)$, which is robust for demanding problems such as solutions with low density and low pressure induced by high-speed shock diffraction. Even though the full scheme is only first order accurate in time, numerical tests indicate that higher order polynomial basis produces much better numerical solutions, e.g., better resolution for capturing the roll-ups during shock reflection.

Incrementality experiments compare customers exposed to a marketing action designed to increase sales to those randomly assigned to a control group. These experiments suffer from noisy responses which make precise estimation of the average treatment effect (ATE) and marketing ROI difficult. We develop a model that improves the precision by estimating separate treatment effects for three latent strata defined by potential outcomes in the experiment -- customers who would buy regardless of ad exposure, those who would buy only if exposed to ads and those who would not buy regardless. The overall ATE is estimated by averaging the strata-level effects, and this produces a more precise estimator of the ATE over a wide range of conditions typical of marketing experiments. Analytical results and simulations show that the method decreases the sampling variance of the ATE most when (1) there are large differences in the treatment effect between latent strata and (2) the model used to estimate the strata-level effects is well-identified. Applying the procedure to 5 catalog experiments shows a reduction of 30-60% in the variance of the overall ATE. This leads to a substantial decrease in decision errors when the estimator is used to determine whether ads should be continued or discontinued.

This paper presents a method for real-time estimation of 2-dimensional direction of arrival (2D-DOA) of one or more sound sources using a nonlinear array of three microphones. 2D-DOA is estimated employing frame-level time difference of arrival (TDOA) measurements. Unlike conventional methods, which infer location parameters from TDOAs using a theoretical model, we propose a more practical approach based on supervised learning. The proposed model employs nearest neighbor search (NNS) applied to a spherical Fibonacci lattice consisting of TDOA to 2D-DOA mappings learned directly in the field. Filtering and clustering post-processors are also introduced for improved source detection and localization robustness.

A code of length $n$ is said to be (combinatorially) $(\rho,L)$-list decodable if the Hamming ball of radius $\rho n$ around any vector in the ambient space does not contain more than $L$ codewords. We study a recently introduced class of higher order MDS codes, which are closely related (via duality) to codes that achieve a generalized Singleton bound for list decodability. For some $\ell\geq 1$, higher order MDS codes of length $n$, dimension $k$, and order $\ell$ are denoted as $(n,k)$-MDS($\ell$) codes. We present a number of results on the structure of these codes, identifying the `extend-ability' of their parameters in various scenarios. Specifically, for some parameter regimes, we identify conditions under which $(n_1,k_1)$-MDS($\ell_1$) codes can be obtained from $(n_2,k_2)$-MDS($\ell_2$) codes, via various techniques. We believe that these results will aid in efficient constructions of higher order MDS codes. We also obtain a new field size upper bound for the existence of such codes, which arguably improves over the best known existing bound, in some parameter regimes.

We propose policy gradient algorithms for solving a risk-sensitive reinforcement learning problem in on-policy as well as off-policy settings. We consider episodic Markov decision processes, and model the risk using the broad class of smooth risk measures of the cumulative discounted reward. We propose two template policy gradient algorithms that optimize a smooth risk measure in on-policy and off-policy RL settings, respectively. We derive non-asymptotic bounds that quantify the rate of convergence to our proposed algorithms to a stationary point of the smooth risk measure. As special cases, we establish that our algorithms apply to the optimization of mean-variance and distortion risk measures, respectively.

北京阿比特科技有限公司