亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we are interested in constructing a scheme solving compressible Navier--Stokes equations, with desired properties including high order spatial accuracy, conservation, and positivity-preserving of density and internal energy under a standard hyperbolic type CFL constraint on the time step size, e.g., $\Delta t=\mathcal O(\Delta x)$. Strang splitting is used to approximate convection and diffusion operators separately. For the convection part, i.e., the compressible Euler equation, the high order accurate postivity-preserving Runge--Kutta discontinuous Galerkin method can be used. For the diffusion part, the equation of internal energy instead of the total energy is considered, and a first order semi-implicit time discretization is used for the ease of achieving positivity. A suitable interior penalty discontinuous Galerkin method for the stress tensor can ensure the conservation of momentum and total energy for any high order polynomial basis. In particular, positivity can be proven with $\Delta t=\mathcal{O}(\Delta x)$ if the Laplacian operator of internal energy is approximated by the $\mathbb{Q}^k$ spectral element method with $k=1,2,3$. So the full scheme with $\mathbb{Q}^k$ ($k=1,2,3$) basis is conservative and positivity-preserving with $\Delta t=\mathcal{O}(\Delta x)$, which is robust for demanding problems such as solutions with low density and low pressure induced by high-speed shock diffraction. Even though the full scheme is only first order accurate in time, numerical tests indicate that higher order polynomial basis produces much better numerical solutions, e.g., better resolution for capturing the roll-ups during shock reflection.

相關內容

We propose a numerical method for the Vlasov-Poisson-Fokker-Planck model written as an hyperbolic system thanks to a spectral decomposition in the basis of Hermite functions with respect to the velocity variable and a structure preserving finite volume scheme for the space variable. On the one hand, we show that this scheme naturally preserves both stationary solutions and linearized free-energy estimate. On the other hand, we adapt previous arguments based on hypocoercivity methods to get quantitative estimates ensuring the exponential relaxation to equilibrium of the discrete solution for the linearized Vlasov-Poisson-Fokker-Planck system, uniformly with respect to both scaling and discretization parameters. Finally, we perform substantial numerical simulations for the nonlinear system to illustrate the efficiency of this approach for a large variety of collisional regimes (plasma echos for weakly collisional regimes and trend to equilibrium for collisional plasmas) and to highlight its robustness (unconditional stability, asymptotic preserving properties).

This paper introduces an extension of the Morley element for approximating solutions to biharmonic equations. Traditionally limited to piecewise quadratic polynomials on triangular elements, the extension leverages weak Galerkin finite element methods to accommodate higher degrees of polynomials and the flexibility of general polytopal elements. By utilizing the Schur complement of the weak Galerkin method, the extension allows for fewest local degrees of freedom while maintaining sufficient accuracy and stability for the numerical solutions. The numerical scheme incorporates locally constructed weak tangential derivatives and weak second order partial derivatives, resulting in an accurate approximation of the biharmonic equation. Optimal order error estimates in both a discrete $H^2$ norm and the usual $L^2$ norm are established to assess the accuracy of the numerical approximation. Additionally, numerical results are presented to validate the developed theory and demonstrate the effectiveness of the proposed extension.

In this article we propose two finite element schemes for the Navier-Stokes equations, based on a reformulation that involves differential operators from the de Rham sequence and an advection operator with explicit skew-symmetry in weak form. Our first scheme is obtained by discretizing this formulation with conforming FEEC (Finite Element Exterior Calculus) spaces: it preserves the pointwise divergence free constraint of the velocity, its total momentum and its energy, in addition to being pressure robust. Following the broken-FEEC approach, our second scheme uses fully discontinuous spaces and local conforming projections to define the discrete differential operators. It preserves the same invariants up to a dissipation of energy to stabilize numerical discontinuities. For both schemes we use a middle point time discretization which preserve these invariants at the fully discrete level and we analyse its well-posedness in terms of a CFL condition. Numerical test cases performed with spline finite elements allow us to verify the high order accuracy of the resulting numerical methods, as well as their ability to handle general boundary conditions.

This paper introduces general methodologies for constructing closed-form solutions to several important partial differential equations (PDEs) with polynomial right-hand sides in two and three spatial dimensions. The covered equations include the isotropic and anisotropic Poisson, Helmholtz, Stokes, and elastostatic equations, as well as the time-harmonic linear elastodynamic and Maxwell equations. Polynomial solutions have recently regained significance in the development of numerical techniques for evaluating volume integral operators and have potential applications in certain kinds of Trefftz finite element methods. Our approach to all of these PDEs relates the particular solution to polynomial solutions of the Poisson and Helmholtz polynomial particular solutions, solutions that can in turn be obtained, respectively, from expansions using homogeneous polynomials and the Neumann series expansion of the operator $(k^2+\Delta)^{-1}$. No matrix inversion is required to compute the solution. The method naturally incorporates divergence constraints on the solution, such as in the case of Maxwell and Stokes flow equations. This work is accompanied by a freely available Julia library, \texttt{PolynomialSolutions.jl}, which implements the proposed methodology in a non-symbolic format and efficiently constructs and provides access to rapid evaluation of the desired solution.

We present a compatible finite element discretisation for the vertical slice compressible Euler equations, at next-to-lowest order (i.e., the pressure space is bilinear discontinuous functions). The equations are numerically integrated in time using a fully implicit timestepping scheme which is solved using monolithic GMRES preconditioned by a linesmoother. The linesmoother only involves local operations and is thus suitable for domain decomposition in parallel. It allows for arbitrarily large timesteps but with iteration counts scaling linearly with Courant number in the limit of large Courant number. This solver approach is implemented using Firedrake, and the additive Schwarz preconditioner framework of PETSc. We demonstrate the robustness of the scheme using a standard set of testcases that may be compared with other approaches.

In this paper, we consider the problem of joint parameter estimation for drift and diffusion coefficients of a stochastic McKean-Vlasov equation and for the associated system of interacting particles. The analysis is provided in a general framework, as both coefficients depend on the solution of the process and on the law of the solution itself. Starting from discrete observations of the interacting particle system over a fixed interval $[0, T]$, we propose a contrast function based on a pseudo likelihood approach. We show that the associated estimator is consistent when the discretization step ($\Delta_n$) and the number of particles ($N$) satisfy $\Delta_n \rightarrow 0$ and $N \rightarrow \infty$, and asymptotically normal when additionally the condition $\Delta_n N \rightarrow 0$ holds.

This paper introduces discrete-holomorphic Perfectly Matched Layers (PMLs) specifically designed for high-order finite difference (FD) discretizations of the scalar wave equation. In contrast to standard PDE-based PMLs, the proposed method achieves the remarkable outcome of completely eliminating numerical reflections at the PML interface, in practice achieving errors at the level of machine precision. Our approach builds upon the ideas put forth in a recent publication [Journal of Computational Physics 381 (2019): 91-109] expanding the scope from the standard second-order FD method to arbitrary high-order schemes. This generalization uses additional localized PML variables to accommodate the larger stencils employed. We establish that the numerical solutions generated by our proposed schemes exhibit an exponential decay rate as they propagate within the PML domain. To showcase the effectiveness of our method, we present a variety of numerical examples, including waveguide problems. These examples highlight the importance of employing high-order schemes to effectively address and minimize undesired numerical dispersion errors, emphasizing the practical advantages and applicability of our approach.

Atmospheric systems incorporating thermal dynamics must be stable with respect to both energy and entropy. While energy conservation can be enforced via the preservation of the skew-symmetric structure of the Hamiltonian form of the equations of motion, entropy conservation is typically derived as an additional invariant of the Hamiltonian system, and satisfied via the exact preservation of the chain rule. This is particularly challenging since the function spaces used to represent the thermodynamic variables in compatible finite element discretisations are typically discontinuous at element boundaries. In the present work we negate this problem by constructing our equations of motion via weighted averages of skew-symmetric formulations using both flux form and material form advection of thermodynamic variables, which allow for the necessary cancellations required to conserve entropy without the chain rule. We show that such formulations allow for stable simulations of both the thermal shallow water and 3D compressible Euler equations on the sphere using mixed compatible finite elements without entropy damping.

We present an implicit-explicit finite volume scheme for two-fluid single-temperature flow in all Mach number regimes which is based on a symmetric hyperbolic thermodynamically compatible description of the fluid flow. The scheme is stable for large time steps controlled by the interface transport and is computational efficient due to a linear implicit character. The latter is achieved by linearizing along constant reference states given by the asymptotic analysis of the single-temperature model. Thus, the use of a stiffly accurate IMEX Runge Kutta time integration and the centered treatment of pressure based quantities provably guarantee the asymptotic preserving property of the scheme for weakly compressible Euler equations with variable volume fraction. The properties of the first and second order scheme are validated by several numerical test cases.

We present implicit and explicit versions of a numerical algorithm for solving a Volterra integro-differential equation. These algorithms are an extension of our previous work, and cater for a kernel of general form. We use an appropriate test equation to study the stability of both algorithms,, numerically deriving stability regions. The region for the implicit method appears to be unbounded, while the explicit has a bounded region close to the origin. We perform a few calculations to demonstrate our results.

北京阿比特科技有限公司