This work develops a distributed optimization algorithm for multi-robot 3-D semantic mapping using streaming range and visual observations and single-hop communication. Our approach relies on gradient-based optimization of the observation log-likelihood of each robot subject to a map consensus constraint to build a common multi-class map of the environment. This formulation leads to closed-form updates which resemble Bayes rule with one-hop prior averaging. To reduce the amount of information exchanged among the robots, we utilize an octree data structure that compresses the multi-class map distribution using adaptive-resolution.
Creating autonomous virtual agents capable of using arbitrary software on any digital device remains a major challenge for artificial intelligence. Two key obstacles hinder progress: insufficient infrastructure for building virtual agents in real-world environments, and the need for in-the-wild evaluation of fundamental agent abilities. To address this, we introduce AgentStudio, an online, realistic, and multimodal toolkit that covers the entire lifecycle of agent development. This includes environment setups, data collection, agent evaluation, and visualization. The observation and action spaces are highly generic, supporting both function calling and human-computer interfaces. This versatility is further enhanced by AgentStudio's graphical user interfaces, which allow efficient development of datasets and benchmarks in real-world settings. To illustrate, we introduce a visual grounding dataset and a real-world benchmark suite, both created with our graphical interfaces. Furthermore, we present several actionable insights derived from AgentStudio, e.g., general visual grounding, open-ended tool creation, learning from videos, etc. We have open-sourced the environments, datasets, benchmarks, and interfaces to promote research towards developing general virtual agents for the future.
This work introduces a preference learning method that ensures adherence to given specifications, with an application to autonomous vehicles. Our approach incorporates the priority ordering of Signal Temporal Logic (STL) formulas describing traffic rules into a learning framework. By leveraging Parametric Weighted Signal Temporal Logic (PWSTL), we formulate the problem of safety-guaranteed preference learning based on pairwise comparisons and propose an approach to solve this learning problem. Our approach finds a feasible valuation for the weights of the given PWSTL formula such that, with these weights, preferred signals have weighted quantitative satisfaction measures greater than their non-preferred counterparts. The feasible valuation of weights given by our approach leads to a weighted STL formula that can be used in correct-and-custom-by-construction controller synthesis. We demonstrate the performance of our method with a pilot human subject study in two different simulated driving scenarios involving a stop sign and a pedestrian crossing. Our approach yields competitive results compared to existing preference learning methods in terms of capturing preferences and notably outperforms them when safety is considered.
Many AI platforms, including traffic monitoring systems, use Federated Learning (FL) for decentralized sensor data processing for learning-based applications while preserving privacy and ensuring secured information transfer. On the other hand, applying supervised learning to large data samples, like high-resolution images requires intensive human labor to label different parts of a data sample. Multiple Instance Learning (MIL) alleviates this challenge by operating over labels assigned to the 'bag' of instances. In this paper, we introduce Federated Multiple-Instance Learning (FedMIL). This framework applies federated learning to boost the training performance in video-based MIL tasks such as vehicle accident detection using distributed CCTV networks. However, data sources in decentralized settings are not typically Independently and Identically Distributed (IID), making client selection imperative to collectively represent the entire dataset with minimal clients. To address this challenge, we propose DPPQ, a framework based on the Determinantal Point Process (DPP) with a quality-based kernel to select clients with the most diverse datasets that achieve better performance compared to both random selection and current DPP-based client selection methods even with less data utilization in the majority of non-IID cases. This offers a significant advantage for deployment on edge devices with limited computational resources, providing a reliable solution for training AI models in massive smart sensor networks.
Training a Graph Neural Network (GNN) model on large-scale graphs involves a high volume of data communication and compu- tations. While state-of-the-art CPUs and GPUs feature high computing power, the Standard GNN training protocol adopted in existing GNN frameworks cannot efficiently utilize the platform resources. To this end, we propose a novel Unified CPU-GPU protocol that can improve the resource utilization of GNN training on a CPU-GPU platform. The Unified CPU-GPU protocol instantiates multiple GNN training processes in parallel on both the CPU and the GPU. By allocating training processes on the CPU to perform GNN training collaboratively with the GPU, the proposed protocol improves the platform resource utilization and reduces the CPU-GPU data transfer overhead. Since the performance of a CPU and a GPU varies, we develop a novel load balancer that balances the workload dynamically between CPUs and GPUs during runtime. We evaluate our protocol using two representative GNN sampling algorithms, with two widely-used GNN models, on three datasets. Compared with the standard training protocol adopted in the state-of-the-art GNN frameworks, our protocol effectively improves resource utilization and overall training time. On a platform where the GPU moderately outperforms the CPU, our protocol speeds up GNN training by up to 1.41x. On a platform where the GPU significantly outperforms the CPU, our protocol speeds up GNN training by up to 1.26x. Our protocol is open-sourced and can be seamlessly integrated into state-of-the-art GNN frameworks and accelerate GNN training. Our protocol particularly benefits those with limited GPU access due to its high demand.
Probabilistic world models increase data efficiency of model-based reinforcement learning (MBRL) by guiding the policy with their epistemic uncertainty to improve exploration and acquire new samples. Moreover, the uncertainty-aware learning procedures in probabilistic approaches lead to robust policies that are less sensitive to noisy observations compared to uncertainty unaware solutions. We propose to combine trajectory sampling and deep Gaussian covariance network (DGCN) for a data-efficient solution to MBRL problems in an optimal control setting. We compare trajectory sampling with density-based approximation for uncertainty propagation using three different probabilistic world models; Gaussian processes, Bayesian neural networks, and DGCNs. We provide empirical evidence using four different well-known test environments, that our method improves the sample-efficiency over other combinations of uncertainty propagation methods and probabilistic models. During our tests, we place particular emphasis on the robustness of the learned policies with respect to noisy initial states.
(Economic) nonlinear model predictive control ((e)NMPC) requires dynamic models that are sufficiently accurate and computationally tractable. Data-driven surrogate models for mechanistic models can reduce the computational burden of (e)NMPC; however, such models are typically trained by system identification for maximum prediction accuracy on simulation samples and perform suboptimally in (e)NMPC. We present a method for end-to-end reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC. We apply our method to two applications derived from an established nonlinear continuous stirred-tank reactor model. The controller performance is compared to that of (e)NMPCs utilizing models trained using system identification, and model-free neural network controllers trained using reinforcement learning. We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC, and that, in contrast to the neural network controllers, the (e)NMPC controllers can react to changes in the control setting without retraining.
Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.