亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Growing polarization of the news media has been blamed for fanning disagreement, controversy and even violence. Early identification of polarized topics is thus an urgent matter that can help mitigate conflict. However, accurate measurement of polarization is still an open research challenge. To address this gap, we propose Partisanship-aware Contextualized Topic Embeddings (PaCTE), a method to automatically detect polarized topics from partisan news sources. Specifically, we represent the ideology of a news source on a topic by corpus-contextualized topic embedding utilizing a language model that has been finetuned on recognizing partisanship of the news articles, and measure the polarization between sources using cosine similarity. We apply our method to a corpus of news about COVID-19 pandemic. Extensive experiments on different news sources and topics demonstrate the effectiveness of our method to precisely capture the topical polarization and alignment between different news sources. To help clarify and validate results, we explain the polarization using the Moral Foundation Theory.

相關內容

Sentence embedding methods using natural language inference (NLI) datasets have been successfully applied to various tasks. However, these methods are only available for limited languages due to relying heavily on the large NLI datasets. In this paper, we propose DefSent, a sentence embedding method that uses definition sentences from a word dictionary, which performs comparably on unsupervised semantics textual similarity (STS) tasks and slightly better on SentEval tasks than conventional methods. Since dictionaries are available for many languages, DefSent is more broadly applicable than methods using NLI datasets without constructing additional datasets. We demonstrate that DefSent performs comparably on unsupervised semantics textual similarity (STS) tasks and slightly better on SentEval tasks to the methods using large NLI datasets. Our code is publicly available at //github.com/hpprc/defsent .

User interest modeling is critical for personalized news recommendation. Existing news recommendation methods usually learn a single user embedding for each user from their previous behaviors to represent their overall interest. However, user interest is usually diverse and multi-grained, which is difficult to be accurately modeled by a single user embedding. In this paper, we propose a news recommendation method with hierarchical user interest modeling, named HieRec. Instead of a single user embedding, in our method each user is represented in a hierarchical interest tree to better capture their diverse and multi-grained interest in news. We use a three-level hierarchy to represent 1) overall user interest; 2) user interest in coarse-grained topics like sports; and 3) user interest in fine-grained topics like football. Moreover, we propose a hierarchical user interest matching framework to match candidate news with different levels of user interest for more accurate user interest targeting. Extensive experiments on two real-world datasets validate our method can effectively improve the performance of user modeling for personalized news recommendation.

This paper introduces StutterNet, a novel deep learning based stuttering detection capable of detecting and identifying various types of disfluencies. Most of the existing work in this domain uses automatic speech recognition (ASR) combined with language models for stuttering detection. Compared to the existing work, which depends on the ASR module, our method relies solely on the acoustic signal. We use a time-delay neural network (TDNN) suitable for capturing contextual aspects of the disfluent utterances. We evaluate our system on the UCLASS stuttering dataset consisting of more than 100 speakers. Our method achieves promising results and outperforms the state-of-the-art residual neural network based method. The number of trainable parameters of the proposed method is also substantially less due to the parameter sharing scheme of TDNN.

Summarization has usually relied on gold standard summaries to train extractive or abstractive models. Social media brings a hurdle to summarization techniques since it requires addressing a multi-document multi-author approach. We address this challenging task by introducing a novel method that generates abstractive summaries of online news discussions. Our method extends a BERT-based architecture, including an attention encoding that fed comments' likes during the training stage. To train our model, we define a task which consists of reconstructing high impact comments based on popularity (likes). Accordingly, our model learns to summarize online discussions based on their most relevant comments. Our novel approach provides a summary that represents the most relevant aspects of a news item that users comment on, incorporating the social context as a source of information to summarize texts in online social networks. Our model is evaluated using ROUGE scores between the generated summary and each comment on the thread. Our model, including the social attention encoding, significantly outperforms both extractive and abstractive summarization methods based on such evaluation.

We introduce a FEVER-like dataset COVID-Fact of $4,086$ claims concerning the COVID-19 pandemic. The dataset contains claims, evidence for the claims, and contradictory claims refuted by the evidence. Unlike previous approaches, we automatically detect true claims and their source articles and then generate counter-claims using automatic methods rather than employing human annotators. Along with our constructed resource, we formally present the task of identifying relevant evidence for the claims and verifying whether the evidence refutes or supports a given claim. In addition to scientific claims, our data contains simplified general claims from media sources, making it better suited for detecting general misinformation regarding COVID-19. Our experiments indicate that COVID-Fact will provide a challenging testbed for the development of new systems and our approach will reduce the costs of building domain-specific datasets for detecting misinformation.

Continuity of care is crucial to ensuring positive health outcomes for patients discharged from an inpatient hospital setting, and improved information sharing can help. To share information, caregivers write discharge notes containing action items to share with patients and their future caregivers, but these action items are easily lost due to the lengthiness of the documents. In this work, we describe our creation of a dataset of clinical action items annotated over MIMIC-III, the largest publicly available dataset of real clinical notes. This dataset, which we call CLIP, is annotated by physicians and covers 718 documents representing 100K sentences. We describe the task of extracting the action items from these documents as multi-aspect extractive summarization, with each aspect representing a type of action to be taken. We evaluate several machine learning models on this task, and show that the best models exploit in-domain language model pre-training on 59K unannotated documents, and incorporate context from neighboring sentences. We also propose an approach to pre-training data selection that allows us to explore the trade-off between size and domain-specificity of pre-training datasets for this task.

Current speech agent interactions are typically user-initiated, limiting the interactions they can deliver. Future functionality will require agents to be proactive, sometimes interrupting users. Little is known about how these spoken interruptions should be designed, especially in urgent interruption contexts. We look to inform design of proactive agent interruptions through investigating how people interrupt others engaged in complex tasks. We therefore developed a new technique to elicit human spoken interruptions of people engaged in other tasks. We found that people interrupted sooner when interruptions were urgent. Some participants used access rituals to forewarn interruptions, but most rarely used them. People balanced speed and accuracy in timing interruptions, often using cues from the task they interrupted. People also varied phrasing and delivery of interruptions to reflect urgency. We discuss how our findings can inform speech agent design and how our paradigm can help gain insight into human interruptions in new contexts.

With the explosion of online news, personalized news recommendation becomes increasingly important for online news platforms to help their users find interesting information. Existing news recommendation methods achieve personalization by building accurate news representations from news content and user representations from their direct interactions with news (e.g., click), while ignoring the high-order relatedness between users and news. Here we propose a news recommendation method which can enhance the representation learning of users and news by modeling their relatedness in a graph setting. In our method, users and news are both viewed as nodes in a bipartite graph constructed from historical user click behaviors. For news representations, a transformer architecture is first exploited to build news semantic representations. Then we combine it with the information from neighbor news in the graph via a graph attention network. For user representations, we not only represent users from their historically clicked news, but also attentively incorporate the representations of their neighbor users in the graph. Improved performances on a large-scale real-world dataset validate the effectiveness of our proposed method.

With the information explosion of news articles, personalized news recommendation has become important for users to quickly find news that they are interested in. Existing methods on news recommendation mainly include collaborative filtering methods which rely on direct user-item interactions and content based methods which characterize the content of user reading history. Although these methods have achieved good performances, they still suffer from data sparse problem, since most of them fail to extensively exploit high-order structure information (similar users tend to read similar news articles) in news recommendation systems. In this paper, we propose to build a heterogeneous graph to explicitly model the interactions among users, news and latent topics. The incorporated topic information would help indicate a user's interest and alleviate the sparsity of user-item interactions. Then we take advantage of graph neural networks to learn user and news representations that encode high-order structure information by propagating embeddings over the graph. The learned user embeddings with complete historic user clicks capture the users' long-term interests. We also consider a user's short-term interest using the recent reading history with an attention based LSTM model. Experimental results on real-world datasets show that our proposed model significantly outperforms state-of-the-art methods on news recommendation.

Zero-shot object detection is an emerging research topic that aims to recognize and localize previously 'unseen' objects. This setting gives rise to several unique challenges, e.g., highly imbalanced positive vs. negative instance ratio, ambiguity between background and unseen classes and the proper alignment between visual and semantic concepts. Here, we propose an end-to-end deep learning framework underpinned by a novel loss function that puts more emphasis on difficult examples to avoid class imbalance. We call our objective the 'Polarity loss' because it explicitly maximizes the gap between positive and negative predictions. Such a margin maximizing formulation is important as it improves the visual-semantic alignment while resolving the ambiguity between background and unseen. Our approach is inspired by the embodiment theories in cognitive science, that claim human semantic understanding to be grounded in past experiences (seen objects), related linguistic concepts (word dictionary) and the perception of the physical world (visual imagery). To this end, we learn to attend to a dictionary of related semantic concepts that eventually refines the noisy semantic embeddings and helps establish a better synergy between visual and semantic domains. Our extensive results on MS-COCO and Pascal VOC datasets show as high as 14 x mAP improvement over state of the art.

北京阿比特科技有限公司