Estimating uncertainty or confidence in the responses of a model can be significant in evaluating trust not only in the responses, but also in the model as a whole. In this paper, we explore the problem of estimating confidence for responses of large language models (LLMs) with simply black-box or query access to them. We propose a simple and extensible framework where, we engineer novel features and train a (interpretable) model (viz. logistic regression) on these features to estimate the confidence. We empirically demonstrate that our simple framework is effective in estimating confidence of Flan-ul2, Llama-13b and Mistral-7b on four benchmark Q\&A tasks as well as of Pegasus-large and BART-large on two benchmark summarization tasks with it surpassing baselines by even over $10\%$ (on AUROC) in some cases. Additionally, our interpretable approach provides insight into features that are predictive of confidence, leading to the interesting and useful discovery that our confidence models built for one LLM generalize zero-shot across others on a given dataset.
The generation of synthetic data is a state-of-the-art approach to leverage when access to real data is limited or privacy regulations limit the usability of sensitive data. A fair amount of research has been conducted on synthetic data generation for single-tabular datasets, but only a limited amount of research has been conducted on multi-tabular datasets with complex table relationships. In this paper we propose the algorithm HCTGAN to synthesize multi-tabular data from complex multi-tabular datasets. We compare our results to the probabilistic model HMA1. Our findings show that our proposed algorithm can more efficiently sample large amounts of synthetic data for deep and complex multi-tabular datasets, whilst achieving adequate data quality and always guaranteeing referential integrity. We conclude that the HCTGAN algorithm is suitable for generating large amounts of synthetic data efficiently for deep multi-tabular datasets with complex relationships. We additionally suggest that the HMA1 model should be used on smaller datasets when emphasis is on data quality.
Existing regression models tend to fall short in both accuracy and uncertainty estimation when the label distribution is imbalanced. In this paper, we propose a probabilistic deep learning model, dubbed variational imbalanced regression (VIR), which not only performs well in imbalanced regression but naturally produces reasonable uncertainty estimation as a byproduct. Different from typical variational autoencoders assuming I.I.D. representations (a data point's representation is not directly affected by other data points), our VIR borrows data with similar regression labels to compute the latent representation's variational distribution; furthermore, different from deterministic regression models producing point estimates, VIR predicts the entire normal-inverse-gamma distributions and modulates the associated conjugate distributions to impose probabilistic reweighting on the imbalanced data, thereby providing better uncertainty estimation. Experiments in several real-world datasets show that our VIR can outperform state-of-the-art imbalanced regression models in terms of both accuracy and uncertainty estimation. Code will soon be available at //github.com/Wang-ML-Lab/variational-imbalanced-regression.
Inverse weighting with an estimated propensity score is widely used by estimation methods in causal inference to adjust for confounding bias. However, directly inverting propensity score estimates can lead to instability, bias, and excessive variability due to large inverse weights, especially when treatment overlap is limited. In this work, we propose a post-hoc calibration algorithm for inverse propensity weights that generates well-calibrated, stabilized weights from user-supplied, cross-fitted propensity score estimates. Our approach employs a variant of isotonic regression with a loss function specifically tailored to the inverse propensity weights. Through theoretical analysis and empirical studies, we demonstrate that isotonic calibration improves the performance of doubly robust estimators of the average treatment effect.
Membership inference attacks (MIAs) are widely used to empirically assess the privacy risks of samples used to train a target machine learning model. State-of-the-art methods however require training hundreds of shadow models, with the same size and architecture of the target model, solely to evaluate the privacy risk. While one might be able to afford this for small models, the cost often becomes prohibitive for medium and large models. We here instead propose a novel approach to identify the at-risk samples using only artifacts available during training, with little to no additional computational overhead. Our method analyzes individual per-sample loss traces and uses them to identify the vulnerable data samples. We demonstrate the effectiveness of our artifact-based approach through experiments on the CIFAR10 dataset, showing high precision in identifying vulnerable samples as determined by a SOTA shadow model-based MIA (LiRA). Impressively, our method reaches the same precision as another SOTA MIA when measured against LiRA, despite it being orders of magnitude cheaper. We then show LT-IQR to outperform alternative loss aggregation methods, perform ablation studies on hyperparameters, and validate the robustness of our method to the target metric. Finally, we study the evolution of the vulnerability score distribution throughout training as a metric for model-level risk assessment.
Speech models have long been known to overfit individual speakers for many classification tasks. This leads to poor generalization in settings where the speakers are out-of-domain or out-of-distribution, as is common in production environments. We view speaker adaptation as a few-shot learning problem and propose investigating transfer learning approaches inspired by recent success with pre-trained models in natural language tasks. We propose pre-finetuning speech models on difficult tasks to distill knowledge into few-shot downstream classification objectives. We pre-finetune Wav2Vec2.0 on every permutation of four multiclass emotional speech recognition corpora and evaluate our pre-finetuned models through 33,600 few-shot fine-tuning trials on the Emotional Speech Dataset.
Diffusion models have emerged as a prominent class of generative models, surpassing previous methods regarding sample quality and training stability. Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions, including as trajectory planners, expressive policy classes, data synthesizers, etc. This survey aims to provide an overview of the advancements in this emerging field and hopes to inspire new avenues of research. First, we examine several challenges encountered by current RL algorithms. Then, we present a taxonomy of existing methods based on the roles played by diffusion models in RL and explore how the existing challenges are addressed. We further outline successful applications of diffusion models in various RL-related tasks while discussing the limitations of current approaches. Finally, we conclude the survey and offer insights into future research directions, focusing on enhancing model performance and applying diffusion models to broader tasks. We are actively maintaining a GitHub repository for papers and other related resources in applying diffusion models in RL: //github.com/apexrl/Diff4RLSurvey .
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.
Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.