亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose leveraging the active reconfigurable intelligence surface (RIS) to support reliable gradient aggregation for over-the-air computation (AirComp) enabled federated learning (FL) systems. An analysis of the FL convergence property reveals that minimizing gradient aggregation errors in each training round is crucial for narrowing the convergence gap. As such, we formulate an optimization problem, aiming to minimize these errors by jointly optimizing the transceiver design and RIS configuration. To handle the formulated highly non-convex problem, we devise a two-layer alternative optimization framework to decompose it into several convex subproblems, each solvable optimally. Simulation results demonstrate the superiority of the active RIS in reducing gradient aggregation errors compared to its passive counterpart.

相關內容

Beyond-diagonal reconfigurable intelligent surface (BD-RIS) has been proposed recently as a novel and generalized RIS architecture that offers enhanced wave manipulation flexibility and large coverage expansion. However, the beyond-diagonal mathematical model in BD-RIS inevitably introduces additional optimization challenges in beamforming design. In this letter, we derive a closed-form solution for the BD-RIS passive beamforming matrix that maximizes the sum of the effective channel gains among users. We further propose a computationally efficient two-stage beamforming framework to jointly design the active beamforming at the base station and passive beamforming at the BD-RIS to enhance the sum-rate for a BD-RIS aided multi-user multi-antenna network.Numerical results show that our proposed algorithm achieves a higher sum-rate while requiring less computation time compared to state-of-the-art algorithms. The proposed algorithm paves the way for practical beamforming design in BD-RIS aided wireless networks.

This paper introduces a learnable Deformable Hypothesis Sampler (DeformSampler) to address the challenging issue of noisy depth estimation for accurate PatchMatch Multi-View Stereo (MVS). We observe that the heuristic depth hypothesis sampling modes employed by PatchMatch MVS solvers are insensitive to (i) the piece-wise smooth distribution of depths across the object surface, and (ii) the implicit multi-modal distribution of depth prediction probabilities along the ray direction on the surface points. Accordingly, we develop DeformSampler to learn distribution-sensitive sample spaces to (i) propagate depths consistent with the scene's geometry across the object surface, and (ii) fit a Laplace Mixture model that approaches the point-wise probabilities distribution of the actual depths along the ray direction. We integrate DeformSampler into a learnable PatchMatch MVS system to enhance depth estimation in challenging areas, such as piece-wise discontinuous surface boundaries and weakly-textured regions. Experimental results on DTU and Tanks \& Temples datasets demonstrate its superior performance and generalization capabilities compared to state-of-the-art competitors. Code is available at //github.com/Geo-Tell/DS-PMNet.

In this paper, we first investigate a visual quality degradation problem observed in recent high-resolution virtual try-on approach. The tendency is empirically found that the textures of clothes are squeezed at the sleeve, as visualized in the upper row of Fig.1(a). A main reason for the issue arises from a gradient conflict between two popular losses, the Total Variation (TV) and adversarial losses. Specifically, the TV loss aims to disconnect boundaries between the sleeve and torso in a warped clothing mask, whereas the adversarial loss aims to combine between them. Such contrary objectives feedback the misaligned gradients to a cascaded appearance flow estimation, resulting in undesirable squeezing artifacts. To reduce this, we propose a Sequential Deformation (SD-VITON) that disentangles the appearance flow prediction layers into TV objective-dominant (TVOB) layers and a task-coexistence (TACO) layer. Specifically, we coarsely fit the clothes onto a human body via the TVOB layers, and then keep on refining via the TACO layer. In addition, the bottom row of Fig.1(a) shows a different type of squeezing artifacts around the waist. To address it, we further propose that we first warp the clothes into a tucked-out shirts style, and then partially erase the texture from the warped clothes without hurting the smoothness of the appearance flows. Experimental results show that our SD-VITON successfully resolves both types of artifacts and outperforms the baseline methods. Source code will be available at //github.com/SHShim0513/SD-VITON.

In this paper, we introduce MVSparse, a novel and efficient framework for cooperative multi-person tracking across multiple synchronized cameras. The MVSparse system is comprised of a carefully orchestrated pipeline, combining edge server-based models with distributed lightweight Reinforcement Learning (RL) agents operating on individual cameras. These RL agents intelligently select informative blocks within each frame based on historical camera data and detection outcomes from neighboring cameras, significantly reducing computational load and communication overhead. The edge server aggregates multiple camera views to perform detection tasks and provides feedback to the individual agents. By projecting inputs from various perspectives onto a common ground plane and applying deep detection models, MVSparse optimally leverages temporal and spatial redundancy in multi-view videos. Notably, our contributions include an empirical analysis of multi-camera pedestrian tracking datasets, the development of a multi-camera, multi-person detection pipeline, and the implementation of MVSparse, yielding impressive results on both open datasets and real-world scenarios. Experimentally, MVSparse accelerates overall inference time by 1.88X and 1.60X compared to a baseline approach while only marginally compromising tracking accuracy by 2.27% and 3.17%, respectively, showcasing its promising potential for efficient multi-camera tracking applications.

In this paper, we present a new construction of simplicial complexes of subpolynomial degree with arbitrarily good local spectral expansion. Previously, the only known high-dimensional expanders (HDXs) with arbitrarily good expansion and less than polynomial degree were based on one of two constructions, namely Ramanujan complexes and coset complexes. In contrast, our construction is a Cayley complex over the group $\mathbb{F}_2^k$, with Cayley generating set given by a Grassmannian HDX. Our construction is in part motivated by a coding-theoretic interpretation of Grassmannian HDXs that we present, which provides a formal connection between Grassmannian HDXs, simplicial HDXs, and LDPC codes. We apply this interpretation to prove a general characterization of the 1-homology groups over $\mathbb{F}_2$ of Cayley simplicial complexes over $\mathbb{F}_2^k$. Using this result, we construct simplicial complexes on $N$ vertices with arbitrarily good local expansion for which the dimension of the 1-homology group grows as $\Omega(\log^2N)$. No prior constructions in the literature have been shown to achieve as large a 1-homology group.

This paper deals with developing techniques for the reconstruction of high-dimensional datasets given each bivariate projection, as would be found in a matrix scatterplot. A graph-based solution is introduced, involving clique-finding, providing a set of possible rows that might make up the original dataset. Complications are discussed, including cases where phantom cliques are found, as well as cases where an exact solution is impossible. Additional methods are shown, with some dealing with fully deducing rows and others dealing with having to creatively produce methods that find some possibilities to be more likely than others. Results show that these methods are highly successful in recreating a significant portion of the original dataset in many cases - for randomly generated and real-world datasets - with the factors leading to a greater rate of failure being lower dimension, higher n, and lower interval.

In this paper, we propose a cell-free scheme for unmanned aerial vehicle (UAV) base stations (BSs) to manage the severe intercell interference between terrestrial users and UAV-BSs of neighboring cells. Since the cell-free scheme requires enormous bandwidth for backhauling, we propose to use the sub-terahertz (sub-THz) band for the backhaul links between UAV-BSs and central processing unit (CPU). Also, because the sub-THz band requires a reliable line-of-sight link, we propose to use a high altitude platform station (HAPS) as a CPU. At the first time-slot of the proposed scheme, users send their messages to UAVs at the sub-6 GHz band. The UAVs then apply match-filtering and power allocation. At the second time-slot, at each UAV, orthogonal resource blocks are allocated for each user at the sub-THz band, and the signals are sent to the HAPS after analog beamforming. In the HAPS receiver, after analog beamforming, the message of each user is decoded. We formulate an optimization problem that maximizes the minimum signal-to-interference-plus-noise ratio of users by finding the optimum allocated power as well as the optimum locations of UAVs. Simulation results demonstrate the superiority of the proposed scheme compared with aerial cellular and terrestrial cell-free baseline schemes.

In this paper, we present a comprehensive evaluation to establish a robust and efficient framework for Lagrangian-based particle tracing using deep neural networks (DNNs). Han et al. (2021) first proposed a DNN-based approach to learn Lagrangian representations and demonstrated accurate particle tracing for an analytic 2D flow field. In this paper, we extend and build upon this prior work in significant ways. First, we evaluate the performance of DNN models to accurately trace particles in various settings, including 2D and 3D time-varying flow fields, flow fields from multiple applications, flow fields with varying complexity, as well as structured and unstructured input data. Second, we conduct an empirical study to inform best practices with respect to particle tracing model architectures, activation functions, and training data structures. Third, we conduct a comparative evaluation against prior techniques that employ flow maps as input for exploratory flow visualization. Specifically, we compare our extended model against its predecessor by Han et al. (2021), as well as the conventional approach that uses triangulation and Barycentric coordinate interpolation. Finally, we consider the integration and adaptation of our particle tracing model with different viewers. We provide an interactive web-based visualization interface by leveraging the efficiencies of our framework, and perform high-fidelity interactive visualization by integrating it with an OSPRay-based viewer. Overall, our experiments demonstrate that using a trained DNN model to predict new particle trajectories requires a low memory footprint and results in rapid inference. Following the best practices for large 3D datasets, our deep learning approach is shown to require approximately 46 times less memory while being more than 400 times faster than the conventional methods.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司