Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.
Nonstationary Gaussian process models can capture complex spatially varying dependence structures in spatial datasets. However, the large number of observations in modern datasets makes fitting such models computationally intractable with conventional dense linear algebra. In addition, derivative-free or even first-order optimization methods can be slow to converge when estimating many spatially varying parameters. We present here a computational framework that couples an algebraic block-diagonal plus low-rank covariance matrix approximation with stochastic trace estimation to facilitate the efficient use of second-order solvers for maximum likelihood estimation of Gaussian process models with many parameters. We demonstrate the effectiveness of these methods by simultaneously fitting 192 parameters in the popular nonstationary model of Paciorek and Schervish using 107,600 sea surface temperature anomaly measurements.
The FedProx algorithm is a simple yet powerful distributed proximal point optimization method widely used for federated learning (FL) over heterogeneous data. Despite its popularity and remarkable success witnessed in practice, the theoretical understanding of FedProx is largely underinvestigated: the appealing convergence behavior of FedProx is so far characterized under certain non-standard and unrealistic dissimilarity assumptions of local functions, and the results are limited to smooth optimization problems. In order to remedy these deficiencies, we develop a novel local dissimilarity invariant convergence theory for FedProx and its minibatch stochastic extension through the lens of algorithmic stability. As a result, we contribute to derive several new and deeper insights into FedProx for non-convex federated optimization including: 1) convergence guarantees independent on local dissimilarity type conditions; 2) convergence guarantees for non-smooth FL problems; and 3) linear speedup with respect to size of minibatch and number of sampled devices. Our theory for the first time reveals that local dissimilarity and smoothness are not must-have for FedProx to get favorable complexity bounds. Preliminary experimental results on a series of benchmark FL datasets are reported to demonstrate the benefit of minibatching for improving the sample efficiency of FedProx.
This paper presents a novel, fast and privacy preserving implementation of deep autoencoders. DAEF (Deep Autoencoder for Federated learning), unlike traditional neural networks, trains a deep autoencoder network in a non-iterative way, which drastically reduces its training time. Its training can be carried out in a distributed way (several partitions of the dataset in parallel) and incrementally (aggregation of partial models), and due to its mathematical formulation, the data that is exchanged does not endanger the privacy of the users. This makes DAEF a valid method for edge computing and federated learning scenarios. The method has been evaluated and compared to traditional (iterative) deep autoencoders using seven real anomaly detection datasets, and their performance have been shown to be similar despite DAEF's faster training.
Quantification of uncertainty in deep-neural-networks (DNN) based image registration algorithms plays a critical role in the deployment of image registration algorithms for clinical applications such as surgical planning, intraoperative guidance, and longitudinal monitoring of disease progression or treatment efficacy as well as in research-oriented processing pipelines. Currently available approaches for uncertainty estimation in DNN-based image registration algorithms may result in sub-optimal clinical decision making due to potentially inaccurate estimation of the uncertainty of the registration stems for the assumed parametric distribution of the registration latent space. We introduce NPBDREG, a fully non-parametric Bayesian framework for uncertainty estimation in DNN-based deformable image registration by combining an Adam optimizer with stochastic gradient Langevin dynamics (SGLD) to characterize the underlying posterior distribution through posterior sampling. Thus, it has the potential to provide uncertainty estimates that are highly correlated with the presence of out of distribution data. We demonstrated the added-value of NPBDREG, compared to the baseline probabilistic VoxelMorph model (PrVXM), on brain MRI image registration using $390$ image pairs from four publicly available databases: MGH10, CMUC12, ISBR18 and LPBA40. The NPBDREG shows a better correlation of the predicted uncertainty with out-of-distribution data ($r>0.95$ vs. $r<0.5$) as well as a 7.3%improvement in the registration accuracy (Dice score, $0.74$ vs. $0.69$, $p \ll 0.01$), and 18% improvement in registration smoothness (percentage of folds in the deformation field, 0.014 vs. 0.017, $p \ll 0.01$). Finally, NPBDREG demonstrated a better generalization capability for data corrupted by a mixed structure noise (Dice score of $0.73$ vs. $0.69$, $p \ll 0.01$) compared to the baseline PrVXM approach.
Fitting a local polynomial model to a noisy sequence of uniformly sampled observations or measurements (i.e. regressing) by minimizing the sum of weighted squared errors (i.e. residuals) may be used to design digital filters for a diverse range of signal-analysis problems, such as detection, classification and tracking (i.e. smoothing or state estimation), in biomedical, financial, and aerospace applications, for instance. Furthermore, the recursive realization of such filters, using a network of so-called leaky integrators, yields simple digital components with a low computational complexity that are ideal in embedded online sensing systems with high data rates. Target tracking, pulse-edge detection, peak detection and anomaly/change detection are considered in this tutorial as illustrative examples. Erlang-weighted polynomial regression provides a design framework within which the various design trade-offs of state estimators (e.g. bias errors vs. random errors) and IIR smoothers (e.g. frequency isolation vs. time localization) may be intuitively balanced. Erlang weights are configured using a smoothing parameter which determines the decay rate of the exponential tail; and a shape parameter which may be used to discount more recent data, so that a greater relative emphasize is placed on a past time interval. In Morrison's 1969 treatise on sequential smoothing and prediction, the exponential weight and the Laguerre polynomials that are orthogonal with respect to this weight, are described in detail; however, more general Erlang weights and the resulting associated Laguerre polynomials are not considered there, nor have they been covered in detail elsewhere since. Thus, one of the purposes of this tutorial is to explain how Erlang weights may be used to shape and improve the (impulse and frequency) response of recursive regression filters.
Recent years have witnessed the rapid development of image storage and transmission systems, in which image compression plays an important role. Generally speaking, image compression algorithms are developed to ensure good visual quality at limited bit rates. However, due to the different compression optimization methods, the compressed images may have different levels of quality, which needs to be evaluated quantificationally. Nowadays, the mainstream full-reference (FR) metrics are effective to predict the quality of compressed images at coarse-grained levels (the bit rates differences of compressed images are obvious), however, they may perform poorly for fine-grained compressed images whose bit rates differences are quite subtle. Therefore, to better improve the Quality of Experience (QoE) and provide useful guidance for compression algorithms, we propose a full-reference image quality assessment (FR-IQA) method for compressed images of fine-grained levels. Specifically, the reference images and compressed images are first converted to $YCbCr$ color space. The gradient features are extracted from regions that are sensitive to compression artifacts. Then we employ the Log-Gabor transformation to further analyze the texture difference. Finally, the obtained features are fused into a quality score. The proposed method is validated on the fine-grained compression image quality assessment (FGIQA) database, which is especially constructed for assessing the quality of compressed images with close bit rates. The experimental results show that our metric outperforms mainstream FR-IQA metrics on the FGIQA database. We also test our method on other commonly used compression IQA databases and the results show that our method obtains competitive performance on the coarse-grained compression IQA databases as well.
Most obstacle avoidance algorithms are only effective in specific environments, and they have low adaptability to some new environments. In this paper, we propose a trajectory learning (TL)-based obstacle avoidance algorithm, which can learn implicit obstacle avoidance mechanism from trajectories generated by general obstacle avoidance algorithms and achieves better adaptability. Specifically, we define a general data structure to describe the obstacle avoidance mechanism. Based on this structure, we transform the learning of the obstacle avoidance algorithm into a multiclass classification problem about the direction selection. Then, we design an artificial neural network (ANN) to fit multiclass classification function through supervised learning and finally obtain the obstacle avoidance mechanism that generates the observed trajectories. Our algorithm can obtain the obstacle avoidance mechanism similar to that demonstrated in the trajectories, and are adaptable to unseen environments. The automatic learning mechanism simplifies modification and debugging of obstacle avoidance algorithms in applications. Simulation results demonstrate that the proposed algorithm can learn obstacle avoidance strategy from trajectories and achieve better adaptability.
This paper considers the problem of symbol detection in massive multiple-input multiple-output (MIMO) wireless communication systems. We consider hard-thresholding preceeded by two variants of the regularized least squares (RLS) decoder; namely the unconstrained RLS and the RLS with box constraint. For all schemes, we focus on the evaluation of the mean squared error (MSE) and the symbol error probability (SEP) for M-ary pulse amplitude modulation (M-PAM) symbols transmitted over a massive MIMO system when the channel is estimated using linear minimum mean squared error (LMMSE) estimator. Under such circumstances, the channel estimation error is Gaussian which allows for the use of the convex Gaussian min-max theorem (CGMT) to derive asymptotic approximations for the MSE and SER when the system dimensions and the coherence duration grow large with the same pace. The obtained expressions are then leveraged to derive the optimal power distribution between pilot and data under a total transmit energy constraint. In addition, we derive an asymptotic approximation of the goodput for all schemes which is then used to jointly optimize the number of training symbols and their associated power. Numerical results are presented to support the accuracy of the theoretical results.
Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}
Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.