亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

IoT devices trigger real-time applications by receiving data from their vicinity. Modeling these applications in the form of workflows enables automating their procedure, especially for the business and industry. Depending on the features of the applications, they can be modeled in different forms, including single workflow, multiple workflows, and workflow ensembles. Since the whole data must be sent to the cloud servers for processing and storage, cloud computing has many challenges for executing real-time applications, such as bandwidth limitation, delay, and privacy. Edge paradigms are introduced to address the challenges of cloud computing in executing IoT applications. Executing IoT applications using device-to-device communications in edge paradigms requiring direct communication between devices in a network with a graph topology. While there is no simulator supporting simulating workflow-based applications and device-to-device communication, this paper introduces a toolkit for simulating resource management of scientific workflows in distributed environments with graph topology called WIDESim.The graph topology of WIDESim enables D2D communications in edge paradigms. WIDESim can work with all three different structures of scientific workflows: single, multiple workflows, and workflow ensembles. It has no constraint on the topology of the distributed environment. Also, unlike most existing network simulators, this simulator enables dynamic resource management and scheduling. We have validated the performance of WIDESim in comparison to standard simulators and workflow management tools. Also, we have evaluated its performance in different scenarios of distributed computing systems using different types of workflow-based applications. The results indicate that WIDESim's performance is close to existing standard simulators besides its improvements.

相關內容

Current quantum hardware prohibits any direct use of large classical datasets. Coresets allow for a succinct description of these large datasets and their solution in a computational task is competitive with the solution on the original dataset. The method of combining coresets with small quantum computers to solve a given task that requires a large number of data points was first introduced by Harrow [arXiv:2004.00026]. In this paper, we apply the coreset method in three different well-studied classical machine learning problems, namely Divisive Clustering, 3-means Clustering, and Gaussian Mixture Model Clustering. We provide a Hamiltonian formulation of the aforementioned problems for which the number of qubits scales linearly with the size of the coreset. Then, we evaluate how the variational quantum eigensolver (VQE) performs on these problems and demonstrate the practical efficiency of coresets when used along with a small quantum computer. We perform noiseless simulations on instances of sizes up to 25 qubits on CUDA Quantum and show that our approach provides comparable performance to classical solvers.

Approximation of high dimensional functions is in the focus of machine learning and data-based scientific computing. In many applications, empirical risk minimisation techniques over nonlinear model classes are employed. Neural networks, kernel methods and tensor decomposition techniques are among the most popular model classes. We provide a numerical study comparing the performance of these methods on various high-dimensional functions with focus on optimal control problems, where the collection of the dataset is based on the application of the State-Dependent Riccati Equation.

Input gradients have a pivotal role in a variety of applications, including adversarial attack algorithms for evaluating model robustness, explainable AI techniques for generating Saliency Maps, and counterfactual explanations.However, Saliency Maps generated by traditional neural networks are often noisy and provide limited insights. In this paper, we demonstrate that, on the contrary, the Saliency Maps of 1-Lipschitz neural networks, learned with the dual loss of an optimal transportation problem, exhibit desirable XAI properties:They are highly concentrated on the essential parts of the image with low noise, significantly outperforming state-of-the-art explanation approaches across various models and metrics. We also prove that these maps align unprecedentedly well with human explanations on ImageNet.To explain the particularly beneficial properties of the Saliency Map for such models, we prove this gradient encodes both the direction of the transportation plan and the direction towards the nearest adversarial attack. Following the gradient down to the decision boundary is no longer considered an adversarial attack, but rather a counterfactual explanation that explicitly transports the input from one class to another. Thus, Learning with such a loss jointly optimizes the classification objective and the alignment of the gradient, i.e. the Saliency Map, to the transportation plan direction.These networks were previously known to be certifiably robust by design, and we demonstrate that they scale well for large problems and models, and are tailored for explainability using a fast and straightforward method.

Large Language Models are successfully adopted in software engineering, especially in code generation. Updating these models with new knowledge is very expensive, and is often required to fully realize their value. In this paper, we propose a novel and effective model editing approach, \textsc{MENT}, to patch LLMs in coding tasks. Based on the mechanism of generative LLMs, \textsc{MENT} enables model editing in next-token predictions, and further supports common coding tasks. \textsc{MENT} is effective, efficient, and reliable. It can correct a neural model by patching 1 or 2 neurons. As the pioneer work on neuron-level model editing of generative models, we formalize the editing process and introduce the involved concepts. Besides, we also introduce new measures to evaluate its generalization ability, and build a benchmark for further study. Our approach is evaluated on three coding tasks, including API-seq recommendation, line-level code generation, and pseudocode-to-code transaction. It outperforms the state-of-the-art by a significant margin on both effectiveness and efficiency measures. In addition, we demonstrate the usages of \textsc{MENT} for LLM reasoning in software engineering. By editing the LLM knowledge with \textsc{MENT}, the directly or indirectly dependent behaviors in the chain-of-thought change accordingly and automatically.

The ability to detect manipulated visual content is becoming increasingly important in many application fields, given the rapid advances in image synthesis methods. Of particular concern is the possibility of modifying the content of medical images, altering the resulting diagnoses. Despite its relevance, this issue has received limited attention from the research community. One reason is the lack of large and curated datasets to use for development and benchmarking purposes. Here, we investigate this issue and propose M3Dsynth, a large dataset of manipulated Computed Tomography (CT) lung images. We create manipulated images by injecting or removing lung cancer nodules in real CT scans, using three different methods based on Generative Adversarial Networks (GAN) or Diffusion Models (DM), for a total of 8,577 manipulated samples. Experiments show that these images easily fool automated diagnostic tools. We also tested several state-of-the-art forensic detectors and demonstrated that, once trained on the proposed dataset, they are able to accurately detect and localize manipulated synthetic content, even when training and test sets are not aligned, showing good generalization ability. Dataset and code are publicly available at //grip-unina.github.io/M3Dsynth/.

Clusters of similar or dissimilar objects are encountered in many fields. Frequently used approaches treat the central object of each cluster as latent. Yet, often objects of one or more types cluster around objects of another type. Such arrangements are common in biomedical images of cells, in which nearby cell types likely interact. Quantifying spatial relationships may elucidate biological mechanisms. Parent-offspring statistical frameworks can be usefully applied even when central objects (parents) differ from peripheral ones (offspring). We propose the novel multivariate cluster point process (MCPP) to quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used approaches, the MCPP exploits locations of the central parent object in clusters. It accounts for possibly multilayered, multivariate clustering. The model formulation requires specification of which object types function as cluster centers and which reside peripherally. If such information is unknown, the relative roles of object types may be explored by comparing fit of different models via the deviance information criterion (DIC). In simulated data, we compared DIC of a series of models; the MCPP correctly identified simulated relationships. It also produced more accurate and precise parameter estimates than the classical univariate Neyman-Scott process model. We also used the MCPP to quantify proposed configurations and explore new ones in human dental plaque biofilm image data. MCPP models quantified simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus and successfully captured hypothesized structures for all taxa. Further exploration suggested the presence of clustering between Fusobacterium and Leptotrichia, a previously unreported relationship.

The extensive use of HPC infrastructures and frameworks for running dataintensive applications has led to a growing interest in data partitioning techniques and strategies. In fact, application performance can be heavily affected by how data are partitioned, which in turn depends on the selected size for data blocks, i.e. the block size. Therefore, finding an effective partitioning, i.e. a suitable block size, is a key strategy to speed-up parallel data-intensive applications and increase scalability. This paper describes a methodology, namely BLEST-ML (BLock size ESTimation through Machine Learning), for block size estimation that relies on supervised machine learning techniques. The proposed methodology was evaluated by designing an implementation tailored to dislib, a distributed computing library highly focused on machine learning algorithms built on top of the PyCOMPSs framework. We assessed the effectiveness of the provided implementation through an extensive experimental evaluation considering different algorithms from dislib, datasets, and infrastructures, including the MareNostrum 4 supercomputer. The results we obtained show the ability of BLEST-ML to efficiently determine a suitable way to split a given dataset, thus providing a proof of its applicability to enable the efficient execution of data-parallel applications in high performance environments.

Diffusion models have recently emerged as a promising framework for Image Restoration (IR), owing to their ability to produce high-quality reconstructions and their compatibility with established methods. Existing methods for solving noisy inverse problems in IR, considers the pixel-wise data-fidelity. In this paper, we propose SaFaRI, a spatial-and-frequency-aware diffusion model for IR with Gaussian noise. Our model encourages images to preserve data-fidelity in both the spatial and frequency domains, resulting in enhanced reconstruction quality. We comprehensively evaluate the performance of our model on a variety of noisy inverse problems, including inpainting, denoising, and super-resolution. Our thorough evaluation demonstrates that SaFaRI achieves state-of-the-art performance on both the ImageNet datasets and FFHQ datasets, outperforming existing zero-shot IR methods in terms of LPIPS and FID metrics.

Environmental data science for spatial extremes has traditionally relied heavily on max-stable processes. Even though the popularity of these models has perhaps peaked with statisticians, they are still perceived and considered as the `state-of-the-art' in many applied fields. However, while the asymptotic theory supporting the use of max-stable processes is mathematically rigorous and comprehensive, we think that it has also been overused, if not misused, in environmental applications, to the detriment of more purposeful and meticulously validated models. In this paper, we review the main limitations of max-stable process models, and strongly argue against their systematic use in environmental studies. Alternative solutions based on more flexible frameworks using the exceedances of variables above appropriately chosen high thresholds are discussed, and an outlook on future research is given, highlighting recommendations moving forward and the opportunities offered by hybridizing machine learning with extreme-value statistics.

Recommender systems, a pivotal tool to alleviate the information overload problem, aim to predict user's preferred items from millions of candidates by analyzing observed user-item relations. As for tackling the sparsity and cold start problems encountered by recommender systems, uncovering hidden (indirect) user-item relations by employing side information and knowledge to enrich observed information for the recommendation has been proven promising recently; and its performance is largely determined by the scalability of recommendation models in the face of the high complexity and large scale of side information and knowledge. Making great strides towards efficiently utilizing complex and large-scale data, research into graph embedding techniques is a major topic. Equipping recommender systems with graph embedding techniques contributes to outperforming the conventional recommendation implementing directly based on graph topology analysis and has been widely studied these years. This article systematically retrospects graph embedding-based recommendation from embedding techniques for bipartite graphs, general graphs, and knowledge graphs, and proposes a general design pipeline of that. In addition, comparing several representative graph embedding-based recommendation models with the most common-used conventional recommendation models, on simulations, manifests that the conventional models overall outperform the graph embedding-based ones in predicting implicit user-item interactions, revealing the relative weakness of graph embedding-based recommendation in these tasks. To foster future research, this article proposes constructive suggestions on making a trade-off between graph embedding-based recommendation and the conventional recommendation in different tasks as well as some open questions.

北京阿比特科技有限公司