We consider the following problem that we call the Shortest Two Disjoint Paths problem: given an undirected graph $G=(V,E)$ with edge weights $w:E \rightarrow \mathbb{R}$, two terminals $s$ and $t$ in $G$, find two internally vertex-disjoint paths between $s$ and $t$ with minimum total weight. As shown recently by Schlotter and Seb\H{o} (2022), this problem becomes NP-hard if edges can have negative weights, even if the weight function is conservative, i.e., there are are no cycles in $G$ with negative weight. We propose a polynomial-time algorithm that solves the Shortest Two Disjoint Paths problem for conservative weights in the case when the negative-weight edges form a single tree in $G$.
We show that contrary to appearances, Multimodal Type Theory (MTT) over a 2-category M can be interpreted in any M-shaped diagram of categories having, and functors preserving, M-sized limits, without the need for extra left adjoints. This is achieved by a construction called "co-dextrification" that co-freely adds left adjoints to any such diagram, which can then be used to interpret the "context lock" functors of MTT. Furthermore, if any of the functors in the diagram have right adjoints, these can also be internalized in type theory as negative modalities in the style of FitchTT. We introduce the name Multimodal Adjoint Type Theory (MATT) for the resulting combined general modal type theory. In particular, we can interpret MATT in any finite diagram of toposes and geometric morphisms, with positive modalities for inverse image functors and negative modalities for direct image functors.
We propose a decoder-only language model, \textit{VoxtLM}, that can perform four tasks: speech recognition, speech synthesis, text generation, and speech continuation. VoxtLM integrates text vocabulary with discrete speech tokens from self-supervised speech features and uses special tokens to enable multitask learning. Compared to a single-task model, VoxtLM exhibits a significant improvement in speech synthesis, with improvements in both speech intelligibility from 28.9 to 5.6 and objective quality from 2.68 to 3.90. VoxtLM also improves speech generation and speech recognition performance over the single-task counterpart. VoxtLM is trained with publicly available data and training recipes and model checkpoints will be open-sourced to make fully reproducible work.
A family of stabilizer-free $P_k$ virtual elements are constructed on triangular meshes. When choosing an accurate and proper interpolation, the stabilizer of the virtual elements can be dropped while the quasi-optimality is kept. The interpolating space here is the space of continuous $P_k$ polynomials on the Hsieh-Clough-Tocher macro-triangle, where the macro-triangle is defined by connecting three vertices of a triangle with its barycenter. We show that such an interpolation preserves $P_k$ polynomials locally and enforces the coerciveness of the resulting bilinear form. Consequently the stabilizer-free virtual element solutions converge at the optimal order. Numerical tests are provided to confirm the theory and to be compared with existing virtual elements.
We consider two decision problems in infinite groups. The first problem is Subgroup Intersection: given two finitely generated subgroups $\langle \mathcal{G} \rangle, \langle \mathcal{H} \rangle$ of a group $G$, decide whether the intersection $\langle \mathcal{G} \rangle \cap \langle \mathcal{H} \rangle$ is trivial. The second problem is Coset Intersection: given two finitely generated subgroups $\langle \mathcal{G} \rangle, \langle \mathcal{H} \rangle$ of a group $G$, as well as elements $g, h \in G$, decide whether the intersection of the two cosets $g \langle \mathcal{G} \rangle \cap h \langle \mathcal{H} \rangle$ is empty. We show that both problems are decidable in finitely generated abelian-by-cyclic groups. In particular, we reduce them to the Shifted Monomial Membership problem (whether an ideal of the Laurent polynomial ring over integers contains any element of the form $X^z - f,\; z \in \mathbb{Z} \setminus \{0\}$). We also point out some obstacles for generalizing these results from abelian-by-cyclic groups to arbitrary metabelian groups.
We prove that the scaled maximum steady-state waiting time and the scaled maximum steady-state queue length among $N$ $GI/GI/1$-queues in the $N$-server fork-join queue, converge to a normally distributed random variable as $N\to\infty$. The maximum steady-state waiting time in this queueing system scales around $\frac{1}{\gamma}\log N$, where $\gamma$ is determined by the cumulant generating function $\Lambda$ of the service distribution and solves the Cram\'er-Lundberg equation with stochastic service times and deterministic inter-arrival times. This value $\frac{1}{\gamma}\log N$ is reached at a certain hitting time. The number of arrivals until that hitting time satisfies the central limit theorem, with standard deviation $\frac{\sigma_A}{\sqrt{\Lambda'(\gamma)\gamma}}$. By using distributional Little's law, we can extend this result to the maximum queue length. Finally, we extend these results to a fork-join queue with different classes of servers.
In this paper, we study the problem of maximizing $k$-submodular functions subject to a knapsack constraint. For monotone objective functions, we present a $\frac{1}{2}(1-e^{-2})\approx 0.432$ greedy approximation algorithm. For the non-monotone case, we are the first to consider the knapsack problem and provide a greedy-type combinatorial algorithm with approximation ratio $\frac{1}{3}(1-e^{-3})\approx 0.317$.
The sequential composition of propositional logic programs has been recently introduced. This paper studies the sequential {\em decomposition} of programs by studying Green's relations $\mathcal{L,R,J}$ -- well-known in semigroup theory -- between programs. In a broader sense, this paper is a further step towards an algebraic theory of logic programming.
In the Activation Edge-Multicover problem we are given a multigraph $G=(V,E)$ with activation costs $\{c_{e}^u,c_{e}^v\}$ for every edge $e=uv \in E$, and degree requirements $r=\{r_v:v \in V\}$. The goal is to find an edge subset $J \subseteq E$ of minimum activation cost $\sum_{v \in V}\max\{c_{uv}^v:uv \in J\}$,such that every $v \in V$ has at least $r_v$ neighbors in the graph $(V,J)$. Let $k= \max_{v \in V} r_v$ be the maximum requirement and let $\theta=\max_{e=uv \in E} \frac{\max\{c_e^u,c_e^v\}}{\min\{c_e^u,c_e^v\}}$ be the maximum quotient between the two costs of an edge. For $\theta=1$ the problem admits approximation ratio $O(\log k)$. For $k=1$ it generalizes the Set Cover problem (when $\theta=\infty$), and admits a tight approximation ratio $O(\log n)$. This implies approximation ratio $O(k \log n)$ for general $k$ and $\theta$, and no better approximation ratio was known. We obtain the first logarithmic approximation ratio $O(\log k +\log\min\{\theta,n\})$, that bridges between the two known ratios -- $O(\log k)$ for $\theta=1$ and $O(\log n)$ for $k=1$. This implies approximation ratio $O\left(\log k +\log\min\{\theta,n\}\right) +\beta \cdot (\theta+1)$ for the Activation $k$-Connected Subgraph problem, where $\beta$ is the best known approximation ratio for the ordinary min-cost version of the problem.
Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.
We define a family of $C^1$ functions which we call "nowhere coexpanding functions" that is closed under composition and includes all $C^3$ functions with non-positive Schwarzian derivative. We establish results on the number and nature of the fixed points of these functions, including a generalisation of a classic result of Singer.