亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The complex transmission mechanism of cross-packet hybrid automatic repeat request (XP-HARQ) hinders its optimal system design. To overcome this difficulty, this letter attempts to use the deep reinforcement learning (DRL) to solve the rate selection problem of XP-HARQ over correlated fading channels. In particular, the long term average throughput (LTAT) is maximized by properly choosing the incremental information rate for each HARQ round on the basis of the outdated channel state information (CSI) available at the transmitter. The rate selection problem is first converted into a Markov decision process (MDP), which is then solved by capitalizing on the algorithm of deep deterministic policy gradient (DDPG) with prioritized experience replay. The simulation results finally corroborate the superiority of the proposed XP-HARQ scheme over the conventional HARQ with incremental redundancy (HARQ-IR) and the XP-HARQ with only statistical CSI.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 推斷 · 向量化 · 解碼 · 語音識別 ·
2023 年 9 月 26 日

Attention-based encoder-decoder models with autoregressive (AR) decoding have proven to be the dominant approach for automatic speech recognition (ASR) due to their superior accuracy. However, they often suffer from slow inference. This is primarily attributed to the incremental calculation of the decoder. This work proposes a partially AR framework, which employs segment-level vectorized beam search for improving the inference speed of an ASR model based on the hybrid connectionist temporal classification (CTC) attention-based architecture. It first generates an initial hypothesis using greedy CTC decoding, identifying low-confidence tokens based on their output probabilities. We then utilize the decoder to perform segment-level vectorized beam search on these tokens, re-predicting in parallel with minimal decoder calculations. Experimental results show that our method is 12 to 13 times faster in inference on the LibriSpeech corpus over AR decoding whilst preserving high accuracy.

While the design of blind image quality assessment (IQA) algorithms has improved significantly, the distribution shift between the training and testing scenarios often leads to a poor performance of these methods at inference time. This motivates the study of test time adaptation (TTA) techniques to improve their performance at inference time. Existing auxiliary tasks and loss functions used for TTA may not be relevant for quality-aware adaptation of the pre-trained model. In this work, we introduce two novel quality-relevant auxiliary tasks at the batch and sample levels to enable TTA for blind IQA. In particular, we introduce a group contrastive loss at the batch level and a relative rank loss at the sample level to make the model quality aware and adapt to the target data. Our experiments reveal that even using a small batch of images from the test distribution helps achieve significant improvement in performance by updating the batch normalization statistics of the source model.

Knowledge distillation (KD) is used to enhance automatic speaker verification performance by ensuring consistency between large teacher networks and lightweight student networks at the embedding level or label level. However, the conventional label-level KD overlooks the significant knowledge from non-target speakers, particularly their classification probabilities, which can be crucial for automatic speaker verification. In this paper, we first demonstrate that leveraging a larger number of training non-target speakers improves the performance of automatic speaker verification models. Inspired by this finding about the importance of non-target speakers' knowledge, we modified the conventional label-level KD by disentangling and emphasizing the classification probabilities of non-target speakers during knowledge distillation. The proposed method is applied to three different student model architectures and achieves an average of 13.67% improvement in EER on the VoxCeleb dataset compared to embedding-level and conventional label-level KD methods.

Despite having the same basic prophet inequality setup and model of loss aversion, conclusions in our multi-dimensional model differs considerably from the one-dimensional model of Kleinberg et al. For example, Kleinberg et al. gives a tight closed-form on the competitive ratio that an online decision-maker can achieve as a function of $\lambda$, for any $\lambda \geq 0$. In our multi-dimensional model, there is a sharp phase transition: if $k$ denotes the number of dimensions, then when $\lambda \cdot (k-1) \geq 1$, no non-trivial competitive ratio is possible. On the other hand, when $\lambda \cdot (k-1) < 1$, we give a tight bound on the achievable competitive ratio (similar to Kleinberg et al.). As another example, Kleinberg et al. uncovers an exponential improvement in their competitive ratio for the random-order vs. worst-case prophet inequality problem. In our model with $k\geq 2$ dimensions, the gap is at most a constant-factor. We uncover several additional key differences in the multi- and single-dimensional models.

Regular expressions are widely used in software. Various regular expression engines support different combinations of extensions to classical regular constructs such as Kleene star, concatenation, nondeterministic choice (union in terms of match semantics). The extensions include e.g. anchors, lookarounds, counters, backreferences. The properties of combinations of such extensions have been subject of active recent research. In the current paper we present a symbolic derivatives based approach to finding matches to regular expressions that, in addition to the classical regular constructs, also support complement, intersection and lookarounds (both negative and positive lookaheads and lookbacks). The theory of computing symbolic derivatives and determining nullability given an input string is presented that shows that such a combination of extensions yields a match semantics that corresponds to an effective Boolean algebra, which in turn opens up possibilities of applying various Boolean logic rewrite rules to optimize the search for matches. In addition to the theoretical framework we present an implementation of the combination of extensions to demonstrate the efficacy of the approach accompanied with practical examples.

Learning-based approaches to autonomous vehicle planners have the potential to scale to many complicated real-world driving scenarios by leveraging huge amounts of driver demonstrations. However, prior work only learns to estimate a single planning trajectory, while there may be multiple acceptable plans in real-world scenarios. To solve the problem, we propose an interpretable neural planner to regress a heatmap, which effectively represents multiple potential goals in the bird's-eye view of an autonomous vehicle. The planner employs an adaptive Gaussian kernel and relaxed hourglass loss to better capture the uncertainty of planning problems. We also use a negative Gaussian kernel to add supervision to the heatmap regression, enabling the model to learn collision avoidance effectively. Our systematic evaluation on the Lyft Open Dataset across a diverse range of real-world driving scenarios shows that our model achieves a safer and more flexible driving performance than prior works.

Ordered sequences of data, specified with a join operation to combine sequences, serve as a foundation for the implementation of parallel functional algorithms. This abstract data type can be elegantly and efficiently implemented using balanced binary trees, where a join operation is provided to combine two trees and rebalance as necessary. In this work, we present a verified implementation and cost analysis of joinable red-black trees in $\textbf{calf}$, a dependent type theory for cost analysis. We implement red-black trees and auxiliary intermediate data structures in such a way that all correctness invariants are intrinsically maintained. Then, we describe and verify precise cost bounds on the operations, making use of the red-black tree invariants. Finally, we implement standard algorithms on sequences using the simple join-based signature and bound their cost in the case that red-black trees are used as the underlying implementation. All proofs are formally mechanized using the embedding of $\textbf{calf}$ in the Agda theorem prover.

In many branches of engineering, Banach contraction mapping theorem is employed to establish the convergence of certain deterministic algorithms. Randomized versions of these algorithms have been developed that have proved useful in data-driven problems. In a class of randomized algorithms, in each iteration, the contraction map is approximated with an operator that uses independent and identically distributed samples of certain random variables. This leads to iterated random operators acting on an initial point in a complete metric space, and it generates a Markov chain. In this paper, we develop a new stochastic dominance based proof technique, called probabilistic contraction analysis, for establishing the convergence in probability of Markov chains generated by such iterated random operators in certain limiting regime. The methods developed in this paper provides a general framework for understanding convergence of a wide variety of Monte Carlo methods in which contractive property is present. We apply the convergence result to conclude the convergence of fitted value iteration and fitted relative value iteration in continuous state and continuous action Markov decision problems as representative applications of the general framework developed here.

Simulation of autonomous vehicle systems requires that simulated traffic participants exhibit diverse and realistic behaviors. The use of prerecorded real-world traffic scenarios in simulation ensures realism but the rarity of safety critical events makes large scale collection of driving scenarios expensive. In this paper, we present DJINN - a diffusion based method of generating traffic scenarios. Our approach jointly diffuses the trajectories of all agents, conditioned on a flexible set of state observations from the past, present, or future. On popular trajectory forecasting datasets, we report state of the art performance on joint trajectory metrics. In addition, we demonstrate how DJINN flexibly enables direct test-time sampling from a variety of valuable conditional distributions including goal-based sampling, behavior-class sampling, and scenario editing.

The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources

北京阿比特科技有限公司